Surveillance des systèmes électroniques de puissance embarqués dans le véhicule électrique
-Méthodes et outils-

Soutenue le 11 Décembre 2004 devant la commission d’examen :

Mr Lotfi Kamoun Président
Mme Ilhem Slama Belkhoja Rapporteur
Mr Nouri Masmoudi Rapporteur
Mr Fayçal Sellami Directeur de thèse
Mr Bruno François Co-Encadrant
Mr Kamal AL Haddad Co-Encadrant

Thèse préparée en collaboration avec le laboratoire L2EP de l’Ecole Centrale de Lille (France) et le laboratoire de recherche ETS-Bombardier Transport-Amérique du Nord (Canada Montréal)
Remerciements

Ce travail a été effectué dans le Laboratoire d’Electronique et des Technologies de l’Information (L.E.T.I) de l’Ecole Nationale d’Ingénieur de Sfax (E.N.I.S) dirigé par Monsieur Lotfi Kamoun professeur à l’ENIS, que je tiens à remercier d’avoir bien voulu présider ce jury.

Je tiens à exprimer ma profonde reconnaissance à Monsieur Fayçal Sellami professeur à l’ENIS, responsable de la formation doctorale et chef de l’équipe électronique de puissance, d’avoir veillé au bon déroulement de mes travaux. Ses compétences scientifiques et ses discussions fructueuses m’ont beaucoup apporté.

Que Madame Ilhem Slama Belkhoja professeur à l’Ecole Nationale d’Ingénieurs de Tunis, trouve ici l’expression de ma profonde gratitude pour avoir accepté d’examiner ce travail et d’en être le rapporteur. Je la remercie vivement d’avoir participé à ce jury malgré ses nombreuses préoccupations.

J’adresse mes vifs remerciements à Monsieur Nouri Masmoudi professeur à l’ENIS, pour avoir accepté d’examiner ce travail et d’en être le rapporteur malgré les charges que lui imposent ses nombreuses responsabilités.

Je tiens à remercier Monsieur Bruno François, Maître de conférence à l’Ecole Centrale de Lille, pour ses qualités humaines et techniques. Je le remercie d’avoir bien voulu co-encadrer ce travail avec rigueur et disponibilité.

Je suis sincèrement reconnaissante à Monsieur Kamal AL Haddad, professeur à l’Ecole de Technologie Supérieure de Montréal Canada et co-encadreur des travaux de ma thèse, pour l’intérêt qu’il a porté à ce travail et pour l’honneur qu’il m’a fait en participants à ce jury.

De même je tiens à remercier Monsieur Mohamed Ben Messaoud, Maître assistant à l’ENIS, pour ses conseils pertinents et ses qualités humaines et scientifiques qui ont permis l’accomplissement de ce travail dans de bonnes conditions.

Que toutes les personnes qui m’ont apporté leur aide, directement ou indirectement durant toute cette période, et qui m’ont permis de mener à bien mes travaux trouvent ici mes sincères remerciements.
INTRODUCTION GENERALE
Depuis plusieurs années, les problèmes liés à l’environnement et à une meilleure qualité de vie ont contribué au développement du véhicule électrique. La part prise par le véhicule routier dans les émissions polluantes et les nuisances sonores dans les métropoles, ajoutée aux problèmes liés à la mobilité urbaine sont sans aucun doute importants. Ceci a donc poussé les constructeurs à proposer, en première alternative, des véhicules électriques de types urbains malgré certains obstacles liés notamment à leur autonomie.

Toute fois, pour inciter l’usager, outre des mesures restrictives d’accès au centre ville prises dans certains pays, il est nécessaire de fournir un véhicule qui réponde aux mieux à ses attentes et qui puisse ainsi le pousser à changer ses habitudes et sa mentalité. La sûreté de fonctionnement est l’une des exigences essentielles à considérer vu les risques et les conséquences critiques que peuvent avoir les défaillances en terme de vies humaines et de pertes matérielles. A cet effet, les aspects sécuritaires tiennent une place de choix dans le projet véhicule électrique.

Pour répondre efficacement à l’ensemble de ces objectifs, il est nécessaire de disposer tant au niveau national qu’international d’un outil de coordination et de mutualisation des efforts de recherche.

Le but de la thèse est de contribuer à établir un système de surveillance du système de puissance embarqué dans le Véhicule Electrique.

Dans ce cadre, la chaîne de traction proprement dite, définie par l’ensemble convertisseur électronique, moteur électrique et commande, est donc à considérer comme un élément distinct s’intégrant dans l’ensemble des périphériques associés au véhicule.

La nécessité de bien connaître le système passe par la capacité d’en évaluer les performances et les limites lors de la conception. Devant le manque du modèle assez fin de convertisseurs de puissance (système de puissance) adapté à ce type d’étude, nous nous sommes dirigées vers la recherche de modèle susceptible de répondre aux contraintes de la physique. Ceci nous a donc amenés à définir différents modèles permettant de prendre en compte de manière plus au moins fine les réalités physiques du dispositif semi-conducteur notamment les non-linéarités et les effets de couplage thermo électriques. En effet, le composant de puissance, en particulier l’IGBT, constitue le maillon faible de la chaîne de puissance.
L’utilisation de tel modèle est assujettie à la possibilité d’en identifier les paramètres physiques ou représentatifs nécessaires. Ces outils de conception et d’analyse vont être les bases d’une seconde démarche axée sur des études de fiabilité et de sûreté de fonctionnement et plus particulièrement pour l’analyse des régimes de défaut et leurs surveillances. Les impératifs de fiabilité, de disponibilité et de sécurité imposent l’étude de causes et des conséquences de leurs défauts. En particulier, les défaillances des interrupteurs de puissance dans l’onduleur nécessitent une analyse approfondie car leurs conséquences sur le fonctionnement de l’association peuvent être dramatiques et sont difficilement maîtrisables.

Ce travail s’est articulé autour de deux axes principaux qui sont la modélisation et la surveillance/diagnostic par des approches complémentaires au traitement de signal du système de puissance. Le but est de définir des outils de conception et d’analyse et par la même, de quantifier l’influence de certains phénomènes liés à ce type d’association.

Le premier chapitre est consacré à une synthèse des différentes méthodes de diagnostic et de surveillance. Les concepts ainsi que la terminologie utilisée dans les domaines de surveillance et de sûreté de fonctionnement y sont présentés dans la première partie.

La deuxième partie de ce chapitre expose des approches de diagnostic et de surveillance utilisées universellement ainsi que leurs limitations.

En troisième partie est définie une architecture générale d’un système de surveillance dans lequel on trouve les fonctions de perception s’appuyant sur les données acquises par les capteurs du système. L’organisation générale des traitements est caractérisée par plusieurs niveaux depuis la génération des alarmes, passant par l’interprétation (filtrage, diagnostic, localisation), finissant par l’aide à la décision après indentification des pannes.

Les différents modèles servant de base à la compréhension et à l’analyse du système sont développés au cours du deuxième chapitre. Un modèle de commutation de l’onduleur à IGBTs est mis en œuvre à partir de modèles comportementaux de l’IGBT et de diode en antiparallèle. Il permet de prendre en compte les effets des temps morts pour la synthèse de la commande. Pour une approche plus réaliste, la modélisation comportementale est utilisée pour les interrupteurs de puissance permettant de quantifier l’influence des phénomènes physiques et de prendre en compte les non-linéarités des semi conducteurs notamment la résistance dynamique. L’identification des paramètres est réalisée soit à partir de définitions analytiques liées aux calculs de prédimensionnement soit à partir de données de constructeurs.

Le phénomène de recouvrement inverse est intégré dans le modèle de la diode en antiparallèle pour la prise en compte des dissipations de puissance lors de la fermeture de la diode.
Une partie de ces travaux a été consacrée à la validation des résultats théoriques et à la recherche de méthodes souples et rapides à mettre en œuvre pour le diagnostic et la surveillance de notre système.

La validation de la méthodologie est présentée au troisième chapitre et vérifiée par une association de puissance (association onduleur-machine asynchrone) à l’aide d’un banc d’essai expérimental construit autour d’un DSPACE 1103. Les premiers résultats concernent le régime établi et le régime de défaut d’ouverture d’un IGBT de l’onduleur. Ils prouvent la validité de la méthodologie.

Par ailleurs, un accent particulier est porté en fin du troisième chapitre aux nouvelles techniques de traitement de signal notamment les techniques d’Ondelettes, pour l’étude des signaux non stationnaires, afin d’analyser les défaillances dans le système.

Nous terminons en donnant des exemples d’exploitation de notre modèle pour le diagnostic et la surveillance du système de puissance notamment en régime dégradé.
Chapitre I

METHODES DE SURVEILLANCE ET DE DIAGNOSTIC
Sommaire I

Chapitre I- Méthodes de surveillance et de diagnostic

I.1 Introduction .. 11
I.2 Concepts généraux.. 12
 I.2.1 Sûreté de fonctionnement .. 12
 I.2.2 Défaillances .. 17
 I.2.3 Classification des défaillances ... 19
 I.2.4 Conséquences des défaillances : Défauts et pannes ... 20
 I.2.5 Classification des défauts et pannes ... 20
I.3 Concepts de diagnostic ... 21
 I.3.1 Classification des méthodes de diagnostic ... 21
 I.3.2 Méthode de traitement du signal .. 22
 I.3.3 Diagnostic par modélisation et identification ... 29
 I.3.4 Diagnostic par modélisation fonctionnelle et matérielle 33
 I.3.5 Diagnostic par réseaux de neurones ... 35
 I.3.6 Diagnostic par les systèmes experts ... 38
I.4 Concepts de surveillance .. 41
 I.4.1 Pourquoi surveiller un système ? ... 42
 I.4.2 Architecture générale ... 42
 I.4.3 Les différents niveaux de traitement : du signal à la décision 43
 I.4.4 Objectifs d'une " bonne " surveillance ... 45
 I.4.5 Génération des alarmes ... 46
I.5 Conclusion .. 50
L’un des enjeux les plus importants dans le domaine de l’automobile concerne aujourd’hui l’augmentation de la fiabilité. Pour atteindre un tel objectif, il faudrait mettre en œuvre un système de surveillance capable d’assurer un état de fonctionnement à tout instant. La visualisation d’information « bas niveau » est négligée car la plupart des signaux sont comparés en permanence à des valeurs limites admissibles, soient des valeurs absolues du signal, soient des gradients (tension, courant, température). Le scénario fréquemment adopté est le suivant : l’opérateur choisit le synoptique (terminaux graphiques) visualisant l’information détaillée concernant ce signal et il décide ensuite après analyse, de l’action à entreprendre : c’est le monitoring.

La demande croissante de fiabilité avec un fonctionnement moins onéreux et plus écologique justifie l’intérêt grandissant porté à des méthodes avancées de pilotage incluant des techniques performantes de détection de défauts.

Un défaut doit être détecté dès son apparition, ensuite localisé et sa cause doit être identifiée. Cette étape concerne la supervision. Elle utilise l’ensemble des informations disponibles au moyen de modèles explicites ou implicites. L’objet de la supervision est de signaler les modes de fonctionnements défaillants et de prendre les décisions appropriées de façon à éviter une dégradation des performances du système pouvant conduire à un accident. Un défaut est perçu comme une déviation des caractéristiques normales des capteurs, des actionneurs ou de tout autre équipement constitutif du système. Ces déviations doivent être détectées si elles affectent les grandeurs de sortie du système par la fonction monitoring. Les variables mesurées sont comparées à des seuils limites et des alarmes sont déclenchées au dépassement des limites. A partir de ces alarmes, l’opérateur met en œuvre des actions appropriées pour mener les variables incriminées à leurs plages de fonctionnement normales. En cas de violation de ces limites, entrainant le système dans un état de danger, l’action de sécurité doit être effectuée. Ces deux fonctions de monitoring et de sécurité peuvent s’appliquer sur les signaux acquis directement sur le système ou sur le résultat de traitement élémentaire portant sur ces signaux tel que le spectre de fréquence. Pour améliorer la supervision des systèmes, une première étape consiste à placer les capteurs de manière à obtenir une image plus précise du processus à surveiller. La deuxième étape consiste à l’exploitation des résultats expérimentaux et des connaissances des opérateurs représentés sous la forme d’une base de connaissances en utilisant un système expert. L’étape suivante concerne l’évaluation des défauts pour les classer selon leur incidence. Cette analyse conduit à des actions appropriées.
Si le défaut est tolérable le système peut continuer à fonctionner. Le défaut peut être conditionnellement tolérable, dans ce cas une modification de la loi de commande sous la forme d'une reconfiguration d'une partie du système de commande doit être réalisée ou une maintenance doit être effectuée. Enfin, dans le cas d'un défaut inacceptable, on procède à l'arrêt immédiat du système et à une opération de réparation.

Les méthodes de surveillance et de diagnostic se répartissent en deux grandes classes. La première classe utilise les redondances informatiques (modèle en parallèle) et la connaissance fournie par le modèle pour caractériser le mode de fonctionnement ou l'état du système. La deuxième classe concerne l'analyse des données fournies par le système qui permet de décider de son état. Les approches utilisées font alors appel à des procédures d'apprentissage ou à l'intelligence artificielle.

I.2 Concepts généraux

La surveillance et le diagnostic s’étendent à divers domaines. Ils concernent les systèmes embarqués comme les installations complexes. Avant d’aborder les méthodes utilisées, … il est primordial de définir les concepts généraux qui mettent en œuvre le caractère générique de la sûreté de fonctionnement et la fiabilité des systèmes.

I.2.1 Sûreté de fonctionnement

La sûreté de fonctionnement est devenue une préoccupation majeure dans la conception, le développement, la validation et l’exploitation de systèmes dont les défaillances peuvent avoir un impact inacceptable sur le fonctionnement, la sécurité des hommes et du matériel et l’environnement.

Introduire les considérations de sûreté dans la conception et l’exploitation des systèmes entraîne un coût économique directement chiffrable, les bénéfices induits le sont beaucoup moins, puisque les incidents ou accidents évités ne sont pas directement visibles. Pour inciter les acteurs à développer une démarche volontaire tournée vers la sûreté de fonctionnement, il est indispensable, d’une part, de développer des techniques et des méthodologies d’application qui produisent des systèmes performants, d’autre part, de développer en parallèle des méthodes d’analyse et d’évaluation qui permettent de certifier et de quantifier ces performances.

Toutefois, la durée de vie des systèmes est une variable aléatoire. En effet, certains systèmes peuvent présenter des anomalies prématurément. Il est donc nécessaire d’utiliser des
grandes moyennes et autres mesures de variabilité pour estimer la durée de vie, la période de garantie qu’on peut accorder au client,…
Souvent la qualité des opérations de diagnostic est quantifiée par des probabilités et des distributions associées notamment à la fiabilité et la disponibilité….

La sûreté de fonctionnement se caractérise à la fois par l’étude structurelle (statistique) et dynamique des systèmes du point de vue prévisionnel, opérationnel et expérimental en tenant compte des aspects probabilités et conséquences des défaillances. Cette discipline consiste à connaître, évaluer, prévoir, mesurer les défaillances des systèmes [ARLA 99].
La sûreté de fonctionnement intervient dans toutes les étapes de réalisation d’un système notamment dans la conception et l’interconnexion des sous-systèmes…

Fiabilité
La fiabilité est définie comme l’aptitude d’une entité à accomplir une fonction requise, dans des conditions données pendant un intervalle de temps donné [ZWIN 95].
La fiabilité est également la probabilité associée \(R(t) \). Le temps moyen de fonctionnement avant la première défaillance MTTF (Mean Time To Failure) est souvent associé à la fiabilité.
Il désigne le temps moyen avant la première défaillance (Figure I-2).
Ce sont essentiellement les études de fiabilité qui sont sources de connaissances sur le mauvais fonctionnement et qui sont utilisées pour le diagnostic [BOUR 01].

Disponibilité :
La disponibilité est définie comme étant l’aptitude d’une entité à être en état d’accomplir une fonction requise dans des conditions données, à un instant donné ou pendant un intervalle de temps donné, en supposant que la fourniture des moyens extérieurs nécessaires soit assurée.
La figure I-1 résume les composantes de la disponibilité.
La disponibilité correspond à la probabilité associé \(A(t) \) de non défaillance du système ou du composant. Quelques grandeurs associées à la disponibilité sont souvent utilisées :
- le temps moyen de disponibilité TMD et la durée moyenne de fonctionnement après réparation MUT (Mean Up Time) (Figure I-2).
- le temps moyen d’indisponibilité MDT (Mean Down Time) qui est la durée moyenne entre l’instant de défaillance et la remise en service.
Chapitre I- Méthodes de surveillance et de diagnostic

Fig.I-1 Contribution des techniques de diagnostic à la disponibilité

Maintenance :
La maintenance est définie comme une combinaison d’activités techniques et administratives et de management. Ces activités sont destinées à maintenir ou à rétablir un bien dans un état ou dans des conditions données de sûreté de fonctionnement, pour accomplir une fonction requise. On distingue deux types de maintenance :

La *maintenance préventive* qui regroupe la maintenance prévisionnelle, conditionnelle et systématique.

La *maintenance corrective* renfermant la maintenance curative et palliative.

Maintenabilité
La maintenabilité est l’aptitude d’une entité à être maintenue ou rétablie, sur un intervalle de temps donné, dans un état dans lequel elle peut accomplir une fonction requise lorsque la
maintenance est accomplie dans des conditions données avec des procédures et des moyens prescrits.

La maintenabilité est caractérisée par une probabilité $M(t)$ qui exprime que la maintenance d’un système est achevée au temps t.

Les grandeurs associées à la maintenabilité souvent utilisées sont :
- Le temps moyen entre le début et la fin de la réparation MTTR (Mean Time To Repair);
- Le temps moyen de fonctionnement entre deux défaillances MTBF (Mean Time Between Failure).

Sécurité

La sécurité est l’aptitude d’une entité à éviter de faire apparaître, dans des conditions données des événements critiques ou catastrophiques.

Actuellement, l’évaluation de la sécurité est limitée à quelques secteurs. Elle se base sur les études statistiques des impacts des accidents réels, expérimentés ou simulés.

Pour préciser les définitions des grandeurs moyennes utilisées tout au long de ce parcours, deux schémas sont présentés sur les deux figures I-2 et I-3.

![Fig. I-2 Définitions graphiques du MTTF, MDT, MUT et MTBF](image1)

![Fig. I-3 Définitions graphiques du MTTR et MDT (Maintenabilité)](image2)
Défaillances
La défaillance est définie comme la cessation des aptitudes d’un dispositif à accomplir une fonction requise. Elles peuvent se manifester par plusieurs symptômes appelés modes de défaillance.

Un exemple de définition selon la norme AFNOR est : « L’altération ou la cessation de l’aptitude d’un ensemble à accomplir ses fonctions requises avec des performances définies dans les spécifications techniques ».

Défauts
Les défaillances sont causées par des défauts via leur activation ou leur occurrence [KANO 01]. On distingue généralement les défauts physiques (résultant de dysfonctionnements matériels), les défauts de conception (résultant d’erreurs commises durant le développement des systèmes), les défauts d’interaction (résultant d’erreurs dans la conduite ou l’utilisation opérationnelle des systèmes, ou dans leur maintenance). Alors que les défauts physiques sont par nature accidentelle, les défauts de conception et d’interaction peuvent être accidentels, ou résultants d’une décision consciente, sans ou avec intention nuisible, auquel cas il s’agit de malveillances. Ainsi, la protection des systèmes fait partie intégrante du domaine de la sûreté de fonctionnement. La protection concerne toutes les composantes d’un système sur les différents niveaux. Elle s’acquiert grâce à l’utilisation combinée d’un ensemble de méthodes qui sont la prévention des défauts, la tolérance aux défauts, l’élimination des défauts et la prédiction des défauts.

- **La prévention des défauts** vise à empêcher l’occurrence ou l’introduction de fautes. Dans le cas du composant de puissance, elle conduit par exemple au durcissement des couches dans les technologies MOS afin d’éviter les claquages électriques.

- **La tolérance aux défauts** a pour but de permettre à un système de remplir sa fonction en dépit des défauts. La tolérance aux défauts physiques concerne les perturbations dues à l’environnement, aux défauts de conception, d’interaction et aux malveillances.

- **La prévision des défauts** consiste à estimer par modélisation ou par expérimentation la présence, la création et les conséquences des défauts. Elle a comme objectif l’évaluation de la sûreté de fonctionnement et des performances.

On relève dans la bibliographie des travaux de recherche sur la tolérance aux défauts notamment dans les composants et circuits intégrés de puissance.

La protection des composants de puissance est un souci majeur. En effet, de tels dispositifs doivent pouvoir continuer à fonctionner après de graves défauts tels qu’un court-circuit ou une inversion de batterie qui sont susceptibles de se produire, par exemple, en environnement
automobile. Avant l’avènement des circuits intégrés de puissance, la protection se limitait à rajouter des éléments externes. Actuellement, pour des raisons de coût et de réduction des dimensions, elle consiste à intégrer la protection sur la puce de silicium. Ces protections concernent l’élévation excessive de température, les forts courants, l’inversion de polarité, les courts-circuits, etc… Elles visent à protéger le composant de puissance qui, dans ces conditions sévères de fonctionnement, risque d’être fatalement endommagé.

I.2.2 Défaillances

Les défaillances, définies précédemment, peuvent être classées selon différents critères. Leurs causes sont définies par les circonstances liées à la conception, la fabrication ou le mode d’emploi Fig.I-4. Le diagnostic recherche l’origine de la défaillance d’un système [VILL 88].
Chapitre I - Méthodes de surveillance et de diagnostic

Fig. I-4 Sources de défaillances d’un composant.
I.2.3 Classification des défaillances

On distingue plusieurs catégories de défaillance qui dépendent soit de la vitesse d’apparition soit de son degré ou des deux.

La classification des défaillances en fonction du degré regroupe [ZWIN 95] :

- La défaillance partielle, qui est la déviation des caractéristiques au delà des limites du bon fonctionnement sans altérer à la fonction.
- Défaillance complète, qui est la déviation des caractéristiques telle qu’elle entraîne la disparition de la fonction
- Défaillance intermittente telle que les aptitudes sont retrouvées après le défaut.

Classification des défaillances en fonction de la vitesse d’apparition :

- Défaillance soudaine qui ne peut être prévue par un examen ou une surveillance.
- Défaillance progressive qui peut être prévue par un contrôle ou une surveillance.

Classification des défaillances en fonction de la vitesse d’apparition et du degré :

- Défaillance cataleptique qui est à la fois soudaine et incomplète.
- Défaillance par dégradation qui est progressive et partielle.

La notion de temps est importante dans la classification des défaillances. Le taux de défaillances \(\lambda(t) \) est l’une des grandeurs fondamentales souvent utilisée pour caractériser la défaillance d’un composant.

\[\lambda(t) = \lim_{\Delta t \to 0} \frac{R(t) - R(t + \Delta t)}{R(t) \Delta(t)} = \frac{1}{R(t)} \left[- \frac{dR(t)}{dt} \right] \]

(où \(R(t) \) est la loi de fiabilité).

Par exemple pour les systèmes électroniques dont la loi \(R(t) \) est donnée par une loi exponentielle :

\[R(t) = e^{-\lambda_0 t} \quad (\lambda_0 \text{ est une constante}). \]

Le taux de défaillance instantanée \(\lambda(t) \) est égale à \(\lambda_0 \) au cours du temps

Le taux de remise en service \(\mu(t) \) est une densité de probabilité conditionnelle qui s’écrit :

\[\mu(t) = \lim_{\Delta t \to 0} \frac{M(t + \Delta t) - M(t)}{(1 - M(t)) \Delta(t)} = \frac{1}{(1 - M(t))} \left[\frac{dM(t)}{dt} \right] \]

(où \(M(t) \) est la fonction de maintenabilité.

Dans de nombreux dispositifs, le taux de défaillance suit la courbe dite "en baignoire" représentée sur la Fig. I-5.
I.2.4 Conséquences des défaillances : Défauts et pannes

La diversité des activités de diagnostic conduit à employer assez souvent les termes de pannes et de défauts, si bien que la différence entre les concepts de défaillance, défaut et panne est parfois très subtile. Une panne résulte d’une défaillance. Elle est définie comme l’inaptitude à accomplir une fonction requise. Les classifications des pannes sont similaires à celles des défaillances.

I.2.5 Classification des défauts et pannes

Une panne peut être intermittente, fugitive, permanente ou multiple.

Panne intermittente : panne subsistant pendant une durée limitée après laquelle le système redevient apte à accomplir une fonction requise.

Panne fugitive : panne intermittente et difficilement constatable.

Panne permanente : panne d’un système qui persiste tant que n’ont pas eu lieu des opérations de maintenance corrective.

Panne multiple : présence de plusieurs pannes simultanément.

Par ailleurs, le défaut est défini comme étant l’écart entre la caractéristique observée sur le dispositif et la caractéristique de référence lorsque celui-ci est en dehors des spécifications.
I.3 Concepts de diagnostic

Ethymologiquement, le terme diagnostic est d’origine grecque (dia : par, gnosis : connaissance).

Le diagnostic est défini essentiellement par deux tâches :

- l’observation des symptômes de la défaillance,
- l’identification de leurs causes à l’aide d’un raisonnement logique.

D’une manière générale, le diagnostic peut se réduire à un problème de résolution inverse entre la cause et son effet, qui est formulé par une relation déterministe, en considérant l’espace des paramètres inconnus qui sont les causes de défauts et l’espace des grandeurs observables qui sont les symptômes.

De par même la définition du terme diagnostic, ce terme désigne l’action de déterminer la cause première d’un défaut. La notion de causalité est ainsi très liée au diagnostic.

Le diagnostic est l’un des facteurs contribuant à la disponibilité des systèmes qui est une composante de la sûreté de fonctionnement.

Une variété de méthodes de diagnostic existe. La sélection de la méthode de diagnostic la plus appropriée à un système est liée au recensement des besoins et des connaissances disponibles [MAQU 00]. Les éléments déterminants à l’étude sont :

- Nature des causes de défaillance à localiser,
- Connaissance des symptômes associés aux défaillances induites par les causes,
- Maîtrise des moyens de mesure des symptômes,
- Maîtrise des moyens de traitement des symptômes,
- Connaissance des mécanismes physiques entre les causes et les effets,
- Recensement des expertises disponibles,
- Inventaire des retours d’expériences.

I.3.1 Classification des méthodes de diagnostic

L’opération de diagnostic est définie comme une identification de la cause probable de défaillances par un raisonnement logique basé sur un ensemble d’informations recueillies à partir des tests de contrôle. L’utilisation des connaissances sur le système permet de caractériser les défaillances par leurs symptômes ou leurs effets.

Il existe une grande diversité de méthodes de diagnostic qui est basée sur la modélisation complète des défaillances et des dégradations ou au contraire sur les connaissances des experts sans la modélisation des mécanismes de propagation des dégradations.
La taxinomie des méthodes de diagnostic permet une première classification en plusieurs grandes familles [ZWIN 95] :

Les méthodes internes impliquent une connaissance approfondie du fonctionnement sous forme de modèles mathématiques validés expérimentalement. Ces méthodes de diagnostic internes dont le principe est illustré sur la Fig.I-6 comprennent la méthode du modèle, les méthodes d’identification de paramètres et les méthodes d’estimation du vecteur d’état.

![Diagramme de diagnostic interne](image)

Fig.I-6 Principe du diagnostic interne

Les méthodes externes supposent qu’aucun modèle n’est disponible pour décrire les relations de causalité. La seule connaissance, dont on dispose, est l’expertise humaine. Cette connaissance est associée aux défaillances après interprétation des différentes signatures. Les méthodes de diagnostic externe regroupent trois familles :

- Les réseaux de neurones artificiels
- Les systèmes experts.
- La reconnaissance des formes

Les méthodes inductives et déductives : cette classification est basée sur le mode de raisonnement utilisé pour remonter à la cause de la défaillance.

I.3.2 Méthode de traitement du signal

A partir des signaux fournis par les capteurs, les systèmes de traitement de l’information vont extraire l’information la plus utile et la plus pertinente à des fins de diagnostic. Ces signaux
peuvent être dépendants ou indépendants du temps, monodimensionnels (exemple : signaux vibratoires, signaux de température) ou bidimensionnels.

Le diagnostic d’une défaillance s’effectue en deux étapes, la première consiste à la détection du fonctionnement défaillant ensuite on identifie la cause de la défaillance à l’aide d’un raisonnement logique. Souvent une signature de référence, dans les domaines temporels, fréquentiels et statistiques est utilisée pour détecter l’écart par comparaison aux signatures observées.

Ainsi le traitement du signal joue un rôle important pour caractériser les divers modes de fonctionnement par des signatures. Néanmoins le signal, issu des capteurs et de leurs chaînes d’instrumentations associées, est souvent entaché de bruit. En effet le signal utilisé est la résultante d’une composante déterministe du signal x_d et une composante aléatoire x_a. Le schéma de principe d’une chaîne de mesure, implanté dans le contexte d’une application de diagnostic, est montré sur la fig. I-7, x étant le signal originel à mesurer.

La prise d’impulsion constitue un moyen de couplage entre la grandeur physique et le capteur. Ce dernier sert à transformer la variable physique en une grandeur exploitable notamment électrique qui sera transmise par la ligne de transmission vers le récepteur pour le décodage et la conversion. Enfin, le module de traitement de signal fournit le signal traité \hat{x} nécessaire à la caractérisation du défaut. Par ailleurs, chaque maillon de la chaîne d’instrumentation peut être une source de bruits et de dégradation du signal [RIPO 99].

La contribution de ces sources de bruits et de distorsion du signal initial (réel) est formulée par :

$$\hat{x} = x + \sum_k \phi_k (b_k, d_k)$$

b_k: bruit du processus

d_k: perturbation apportée par la prise de mesure

ϕ_k: fonction de propagation des bruits et distorsion.
En général, les méthodes de diagnostic reposent sur la caractérisation des signaux en fonction de leurs propriétés temporelles, fréquentielles ou statistiques.

En traitement de signal, plusieurs outils sont extrêmement importants tel que le produit de convolution pour le filtrage des signaux, le rapport signal sur bruit pour connaître le degré de qualité d’un signal déterministe et la corrélation pour la caractérisation spectrale.
La modélisation de signaux déterministes à des fins de diagnostic et de surveillance fait appel à divers outils mathématiques applicables dans les domaines temporels et fréquentiels tel que la transformée de Fourier, la transformée de Laplace, la transformée en z et la transformation de Hilbert etc...

La connaissance de la densité spectrale d’un signal déterministe est un moyen de caractériser l’information utile et la bande de fréquence correspondante. Les opérations de filtrage sont aussi utilisées pour extraire une partie des informations d’un signal dans un domaine fréquentiel spécifique.

En pratique, le diagnostic à base de techniques de traitement du signal se réalise sur une durée finie. De ce fait, l’évaluation par l’une des méthodes de transformation sur un intervalle de temps infini ne concorde pas avec les caractéristiques pratiques calculées à partir de séquences finies. Cette source d’erreur peut compromettre une interprétation correcte des résultats fournis par les algorithmes.

Donc, pour les calculs pratiques des caractéristiques des signaux, les transformées de Fourier discrète et de Fourier rapide sont souvent utilisés pour le calcul des caractéristiques spectrales des signaux à l’aide de systèmes numériques. La notion d’estimateurs s’avère aussi utile dans la pratique du diagnostic. On cite l’exemple de la surveillance de la température du palier d’une machine tournante dont le principe consiste à relever, à intervalle régulier, la température moyenne \(\theta \) à l’aide d’un thermocouple et de comparer les relevés à une valeur moyenne de référence \(\theta_0 \) pour la prise de décision. Le problème général de l’estimation réside dans l’inaccessibilité du paramètre à surveiller qui est entaché de bruit. La résolution du problème de l’estimation consiste à trouver la meilleure approximation du paramètre \(\theta \) basée sur un choix judicieux de fonctions d’estimation répondant à un certain nombre de propriétés.

Parfois les outils classiques de traitement du signal s’avèrent inadaptés à l’analyse de certains signaux où l’hypothèse de stationnarité n’est pas vérifiée.

Pour résoudre ce problème, il faut introduire le concept de non stationnarité. Les signaux non stationnaires ont des propriétés structurelles dépendantes du temps. Cette dépendance temporelle des signaux provient de diverses situations, par exemple, un système soumis à une excitation stationnaire qui n’est plus caractérisé par des paramètres constants. Ce phénomène se rencontre lors du vieillissement des composants électroniques de puissance (par exemple la tension de seuil des semi-conducteurs change ainsi que d’autres paramètres).
La grande diversité des outils dédiés à la caractérisation des signaux non stationnaires rend difficile la comparaison entre les différentes approches. Néanmoins, on distingue deux grandes familles d’outils :

- La famille d’aide à la compréhension de la structure d’un signal.
- La famille d’outils utilisable pour la prise de décision après interprétation des caractéristiques du signal

L’analyse des spécificités des signaux non stationnaires fait ressortir trois catégories distinctes de représentation : les structures fréquentielles, temporelles et les structures conjointes ou d’échelle qui allient les deux aspects.

De manière générale, un signal non stationnaire est une superposition de phénomènes temporels et fréquentiels. La transformation de Wigner-Ville s’avère un outil efficace pour les signaux à superposition de phénomènes temporels et fréquentiels. Cependant, le mode de représentation à structure d’échelle est très utilisé pour détecter des phénomènes qui se déroulent sur des échelles de fréquences distinctes.

La transformation en Ondelettes est une technique bien adaptée à l’analyse de ce type de signaux [DAUB 92]. Le principe consiste à décomposer le signal à l’aide de fonction analysantes particulières, à partir d’une fonction de base d’une Ondelette « mère » $\psi(t)$, qui possèdent deux propriétés particulières. La première propriété impose que $\psi(t)$ soit localisée et oscillante, ce qui conduit à la condition qu’elle soit à décroissance rapide quand $|t| \to \infty$. La seconde est :

$$
\int_{-\infty}^{+\infty} \psi(t)dt = \int_{-\infty}^{+\infty} t\psi(t)dt = \ldots = \int_{-\infty}^{+\infty} t^{m-1}\psi(t)dt
$$

(Eq I.4)

Un exemple d’une Ondelette « mère » est :

$$
\psi(t) = e^{-\frac{t^2}{2}}e^{j\omega_0t}
$$

(Eq I.5)

A partir de l’Ondelette « mère », il est possible de créer des Ondelettes analysantes $\gamma_{(a,b)}(t)$ centrées autour de b et à échelle variable définie par le paramètre a.

$$
\gamma_{(a,b)}(t) = \frac{1}{|a|^{\frac{1}{2}}} \psi\left(\frac{t-b}{a}\right)
$$

(Eq I.6)

a et b sont constantes.

La forme générale de la transformation en ondelettes $T_s(a,b)$ est donnée par :
Chapitre I- Méthodes de surveillance et de diagnostic

\[T_x(a,b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{+\infty} x(t) \psi\left(\frac{t-b}{a}\right) dt \]
(Eq I.7)

D’après cette formule, la décomposition en Ondelettes revient à faire le produit de convolution du signal \(x(t) \) avec la fonction \(\psi(t) \) dans le domaine temporel et, par conséquent, le produit \(X(f) \cdot \psi(f) \) dans le domaine fréquentiel.

La transformation en Ondelettes continue est linéaire. Sa transformation inverse \(T_x^{-1}(a,b) \) permet de revenir au signal original.

\[x(t) = \frac{k}{\sqrt{|a|}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \psi\left(\frac{t-b}{a}\right) T_x(a,b) dadb \]
(Eq I.8)

A la différence de la transformation de Fourier, la technique des Ondelettes utilise la dilatation et la contraction du motif de l’Ondelette originale. D’où la notion d’échelle de dilatation et contraction (analyse multiéchelle). Du point de vue de la détection, la transformée en Ondelette peut être interprétée comme un filtrage multiéchelle. En effet, pour différentes versions dilatées d’une forme connue a priori, on cherche les instants où le signal ressemble le plus à cette forme.

D’un point de vue énergétique, il existe une relation entre la transformée en Ondelettes et la transformée de Wigner-Ville qui est la suivante :

\[|T_x(a,b)|^2 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} W_x(u,v) W_x\left(\frac{u-b}{a}\right) dudv \]
(Eq I.9)

Les fonctions analysantes de Gabor sont dérivées d’une fonction mère constituée d’une courbe gaussienne modulée par une fonction cosinus appelée la fonction analysante [MEYE 92].

\[\psi(t) = e^{-\frac{t^2}{2}} \cos(\omega_0 t) \]
(Eq I.10)

A partir de cette fonction mère, on projette le signal \(x(t) \) sur une base de fonctions :

\[\psi_{(a,b)}(t) = \psi\left(\frac{t-b}{a}\right) \]
(Eq I.11)

Où le paramètre \(a \) est un coefficient de dilatation qui permet de déterminer l’échelle du temps d’observation. Le paramètre \(b \) correspond au décalage de la fonction analysante. La variation du paramètre \(b \) permet de déplacer la fonction analysante le long de l’axe des temps.

Morlet a mis au point des fonctions analysantes \(\psi_{(a,b)}(t) \) à partir de la fonction génératrice suivante.
La figure I-8 représente deux fonctions analysantes dans le domaine temporel pour l’ordre n=4 et n=10.

Les ondelettes de Morlet ont des réponses fréquentielles qui correspondent à des filtres passe bande dont l’amplitude est gaussienne. Il est à noter que la transformation en ondelette ne peut être calculée en temps réel. En pratique, on enregistre le signal dans son intégralité puis on procède au calcul de la transformation par ondelettes.

La Fig I-9 illustre l’application de la transformation en ondelettes de Morlet pour la détection d’une impulsion noyée dans un bruit. L’utilisation de la transformation en ondelettes de Morlet dans cet exemple montre la puissance d’un tel outil pour la détection de singularité. En effet, le coefficient d’ondelette pour 5 Hz a une amplitude élevée comparativement aux autres coefficients.
I.3.3 Diagnostic par modélisation et identification

Le diagnostic par la modélisation appartient aux méthodes de diagnostic interne conformément à la classification ci-dessus. Le principe de la détection repose sur la comparaison des paramètres mesurés avec les paramètres associés à un fonctionnement normal. Les paramètres représentatifs du processus s’obtiennent par la méthode d’identification [FUSS 98]. L’identification est la détermination à partir de la connaissance des signaux d’entrées et de sorties, d’un modèle mathématique appartenant à une classe donnée (comportementale, fonctionnelle…) pour laquelle, les comportements dynamiques ou statiques sont équivalents à ceux du processus au sens d’un critère donné. D’une manière générale, l’identification d’un système signifie la détermination d’un modèle de simulation, c'est-à-dire le choix d'une fonction mathématique et l’extraction de ses paramètres à partir de données expérimentales Fig.I-10.
L’estimation des paramètres concerne la détermination des coefficients du modèle à partir des données expérimentales pour un modèle donné. La terminologie « estimation » fait allusion à ce que les valeurs variables extraites soient entachées d’erreurs.

Fig I-10. Relation entre simulation et identification

Modèles paramétriques et non paramétriques

D’une manière générale, les paramètres d'un modèle peuvent être soit constants (n'évoluent pas dans le temps), variables lentement (vieillissement), variables de manière fréquente et/ou brutale et variables lorsque une perturbation ou une panne surgit. On distingue alors le comportement normal du système, des comportements (anormaux) résultant de ces pannes.

Au moment de la modélisation, il convient de bien prendre garde à la répartition des variables entre celles qui doivent être considérées comme variables d'état et celles qui doivent être prises comme paramètres caractéristiques. En effet, on peut augmenter la difficulté d'un problème de surveillance par une mauvaise paramétrisation. Les modèles se classent en deux catégories : modèles paramétriques et non paramétriques.
Modèles paramétriques

Les modèles paramétriques sont des outils permettant de prédire les réponses dynamiques et statiques du processus indépendamment des signaux de commande. Ils utilisent un nombre fini de paramètres dans la structure mathématique retenue comme modèle du système. Les modèles paramétriques se classent en différentes catégories déduites soit d’une compréhension physique des phénomènes à l’intérieur du processus soit, sur des fondements empiriques ou une approche mixte.

- **Modèle physique ou de « connaissance »**

Le modèle paramétrique physique repose sur des lois qui régissent le système. Ces modèles permettent de simuler le comportement réel du processus dans les limites de validité du modèle et les hypothèses de prise en compte et, par conséquent, toute modification de relation de causalité (cause à effet) sont immédiatement interprétables pour des fins de diagnostic. Par exemple, la surveillance du gradient de température dans les composants de puissance conduira à diagnostiquer un défaut de court-circuit (fracture dans la structure). Néanmoins, ces modèles nécessitent une bonne compréhension de la physique des phénomènes. De plus, ils font appel à plusieurs paramètres qu’il faut identifier. L’intégration de l’ensemble des paramètres dans le modèle pose le problème des temps de calcul, très importants en simulations ce qui entraîne des problèmes pour réaliser le diagnostic en temps réel. Si le modèle est trop simplifié, alors sa précision décroît. Les résultats risquent d’être décevants, ce qui remet en question l’interprétation physique.

- **Modèle empirique ou de « représentation »**

Les modèles paramétriques empiriques ou modèles de « boîte noire » ou de « représentation » sont construits à partir de données expérimentales en faisant abstraction des lois physiques. Cette approche apporte une solution pour une modélisation complexe et coûteuse du fonctionnement par sa simplicité de mise en œuvre et le nombre de paramètres réduits. L’inconvénient de ce type de modèle est d’avoir des paramètres qui n’ont pas de sens physique, par exemple l’analogie électrique thermique ou bien les constantes de temps dans les modèles des systèmes linéaires en automatique. Une autre difficulté dans la modélisation réside dans le choix de la structure du modèle. La validation des modèles issus de cette approche dépend des conditions expérimentales et du domaine de fonctionnement avec lequel il a été identifié. L’extrapolation du modèle dans le domaine non exploré doit être utilisée avec une certaine circonspection.
• Modèle mixte
Les modèles paramétriques mixtes constituent un compromis entre le modèle physique simple et le modèle physique trop complexe en utilisant des paramètres physiques globaux ou en approximant par une fonction. Par exemple, dans le composant de puissance, le coefficient de transfert thermique de trois couches de matériaux différents peut être remplacé par un coefficient global de transfert thermique.
Ainsi, on peut appliquer cette technique de modélisation aux systèmes à structure hiérarchisée dans leur ensemble ou à une de leur partie seulement. Cependant, l’intégration de tous les phénomènes ainsi que l’interaction entre les différents modèles de sous-systèmes peut conduire à des difficultés de simulation et à une validité réduite du modèle.

Modèles non paramétriques
Ils constituent une deuxième catégorie dédiée à la modélisation des caractéristiques dynamiques des systèmes. Ces modèles correspondent aux réponses fréquentielles et temporelles des processus. Le choix entre un modèle paramétrique ou non paramétrique dépend principalement de la connaissance à priori sur la physique des phénomènes et de la méthode de diagnostic. Le modèle non paramétrique est retenu dans le sens de diagnostic externe.

Représentation d’un modèle
Une première étape dans la modélisation des processus est le choix de la représentation fondé sur l’analyse de la nature (continu, discontinu, discret) du processus dont on se propose d’élaborer un modèle. En général, les méthodes d’identification s’adressent à des modèles numériques de simulation implantés sur les calculateurs. Il est nécessaire d’obtenir des modèles discrets des processus continus.
Une seconde étape consiste à identifier le mode de fonctionnement (statique ou dynamique) pour lequel on se propose d’établir le diagnostic.
Les modes statiques sont caractérisés particulièrement par l’absence du facteur temps.
En ce qui concerne les modes dynamiques, le fonctionnement peut être caractérisé par des grandeurs temporelles et spatiales (le système sera décrit par un modèle à paramètres répartis), soit par des grandeurs temporelles uniquement alors on s’oriente vers des modèles à paramètres localisés [FUSS 98].
Une troisième phase pour le choix du modèle sera la classification du modèle du système selon les critères continu/ discret, à paramètres répartis/ concentré, monovariable / multivariable, linéaire/ non linéaire, déterministe/ stochastique.
L’étape de validation de la qualité d’identification se caractérise par une comparaison des réponses mesurées et calculées. Souvent un critère quadratique de type moindre carrés pour calculer l’écart entre les réponses mesurées sur le processus réel et celle déduite du modèle.

I.3.4 Diagnostic par modélisation fonctionnelle et matérielle

La pratique de diagnostic diffère par la nature des activités de conduite (comportement) et de la maintenance. Dans le cadre de la maintenance corrective, le diagnostic est effectué grâce à une connaissance parfaite des relations causales. Par contre en diagnostic préventif, l’analyse des signatures est exploitée par les experts.

I.3.4.1 Méthodes par modélisation fonctionnelle

Le mode de défaillance fonctionnelle correspond à une perte d’une des fonctions d’un élément donné ou à une altération des performances de la fonction hors des limites de spécification fonctionnelle. Le principe des méthodes de modélisation des défaillances fonctionnelles est d’établir à priori les liens entre les causes initiales des défaillances et leurs effets par une analyse fonctionnelle. L’analyse fonctionnelle interne correspond à l’utilisation des formalismes permettant de visualiser les différentes fonctions remplies par les systèmes.

I.3.4.2 Arbre fonctionnel

A partir du cahier de charge de conception, la décomposition fonctionnelle du système est effectuée en appliquant la « trilogie » Entrée/Traitement/Sortie ou encore Capter/Transformer/Transmettre. La représentation par arbre fonctionnel correspond à une décomposition fonctionnelle arborescente hiérarchisée de fonctions [LIMN 92]. Pour la fonction principale, on associe le niveau 0, les fonctions de niveau inférieur correspondent au niveau -1. On utilise des symboles logiques « ET » et « OU » pour prendre en compte les redondances éventuelles Fig I-11.
Cette méthode est adaptée au problème du diagnostic car elle permet les approches inductive et déductive.

I.3.4.3 Analyse des Modes de Défaillance et de leurs Effets : AMDE

Ces analyses sont très utilisées pour les études de sûreté de fonctionnement lors de la conception des systèmes. Elles sont indispensables pour s’assurer que les paramètres de sûreté, de fiabilité, de maintenabilité, de disponibilité et de sécurité sont conformes aux spécifications. Elles prennent en compte toutes les défaillances possibles et analysent les conséquences sur les fonctions des systèmes, ce qui permet l’identification des matériels sensibles faisant l’objet d’un changement de conception ou bien d’une redondance matérielle. La procédure AMDE a été normalisée (AFNOR X60-510/CEI 812-1985). Elle constitue une technique déductive [CHAT 93].

Les étapes de l’AMDE peuvent être résumées dans les points suivants :

- Décomposition du système en sous-systèmes avec identification des organes de chacun.
- Établissement des modes de défaillances pour chaque organe de chaque sous-système.
I.3.4.4 Méthode de l'arbre de défaillance

Cette méthode associe à une défaillance une combinaison d’événements de niveau inférieur qui entraîne sa réalisation. L’arbre de défaillance est constitué de niveaux successifs d’événements tels que chaque événement est le résultat d’une combinaison logique d’événements de niveaux inférieurs. La construction d’un arbre de défaillance utilise un symbolisme spécifique et des règles précises.

Malgré l’aspect d’universalité des méthodes d’analyses fonctionnelles, celles-ci présentent un inconvénient. Leur mise en œuvre exige une connaissance parfaite des dossiers de conception, de réalisation et de fonctionnement. Elle ne peut être conduite que par des experts du domaine.

I.3.5 Diagnostic par réseaux de neurones

Les réseaux de neurones RN sont bien adaptés pour le diagnostic. Grâce au mécanisme d’apprentissage basé sur l’utilisation d’un ensemble de règles, la classification des défaillances est rendue possible.

En effet, les opérateurs sont conduits à reconnaître et à classer les signatures, caractérisant les différents états de fonctionnement, de façon visuelle. Plusieurs fonctions sont nécessaires au diagnostic à savoir, la capacité de perception, la faculté de mémorisation et l’apprentissage, ensuite le raisonnement logique et enfin les facultés d’adaptation. Les réseaux de neurones artificiels sont particulièrement adaptés pour aider les spécialistes de maintenance dans ces activités de reconnaissance et de classification [ZWIN 95]. Par analogie au modèle biologique, un modèle non linéaire de neurone artificiel (processeur élémentaire) est conçu, recevant les signaux de N processeurs $P_j, j=1,...,N$ et délivrant un signal de sortie X_i Fig I-12.
Les N signaux d’activation sont pondérés par des poids de connexions synaptiques ω_{ij} qui représentent le niveau de relation entre les neurones artificiels (la mémoire du neurone artificiel) et font l’objet d’un apprentissage lorsque les neurones sont en réseau. Le neurone artificiel élabore ainsi un signal interne total, à partir des N signaux d’activation.

$$S_i = \sum_{j=1}^{N} \omega_{ij} x_j - \omega_{io} \quad \text{(Eq I.13)}$$

Le signal de sortie X_i est obtenu en appliquant une fonction d'activation sur ce signal interne et servira à exciter les autres neurones qui lui sont connectés. Les fonctions d’activation sont de natures variées : continues, discontinues, aléatoires. Exemple : la fonction linéaire avec seuil, ou à seuils multiples.

Dans le cadre des applications de diagnostic, on considère l’interconnexion des neurones en réseaux. Ces réseaux peuvent être classés en deux grandes familles selon le type d’architecture. On distingue :

- les réseaux non bouclés qui dans la majorité des cas sont mis en œuvre pour les tâches de classification automatique et sont organisés en couches dont certaines sont cachées Fig I-13.

- les réseaux bouclés qui à l’opposé, sont le siège de contre réactions synchrones en fonction du temps.
Fig I-13 Réseau à couche cachée non bouclée

Une deuxième caractéristique du réseau de neurones concerne les méthodes d’apprentissage. Ces mécanismes d’apprentissage sont une émulation du processus de mémorisation de connaissance du cerveau humain. La mémorisation est assurée par les poids synaptiques dont la valeur varie et est régie par des règles d’apprentissage.

Pour la classification, les fonctions d’activation sont généralement des fonctions discontinues de type fonction à seuils. Par exemple, une fonction d’activation à un seuil est utilisée pour séparer l’ensemble des vecteurs en deux classes ω_1 et ω_2 Fig I-14.

$x \in \omega_1$ si $g(x) \geq 0$ \quad (Eq I.14)

$x \in \omega_2$ si $g(x) < 0$ \quad (Eq I.15)

Fig.I-14 Séparation de deux classes avec adaptateur linéaire
Chapitre I - Méthodes de surveillance et de diagnostic

Certes les réseaux de neurones présentent des atouts majeurs pour la résolution de problèmes complexes. Ils présentent une capacité d’apprendre des règles d'apprentissage à partir d’exemples, qu’ils sont capables d’étendre à de nouveaux cas. Ils ont un caractère robuste. En effet, la perte éventuelle de quelques neurones n’affecte pas beaucoup les performances du réseau lors de la reconnaissance. Enfin, ils offrent la possibilité des traitements parallèles des informations contenues dans des millions de neurones.

Toutefois, on peut remarquer que les tâches de diagnostic reposent sur une quantité d’heuristiques difficile à formaliser dans un modèle mathématique, une corrélation entre des variables très disparates, des observations qualitatives (bruitage)…

Critiques sur l’application des RN en diagnostic

Les réseaux de neurones à couches sont aujourd’hui très utilisés en diagnostic industriel en raison de leur capacité à résoudre les problèmes de classification non linéaire. Cependant, le calcul neuromimétique doit être réservé aux traitements de données complexes, bruitées ou incomplètes et pour lesquelles on dispose d’un très grand nombre d’échantillons. Il est vrai aussi que les RN multicouches constituent un outil très performant pour le diagnostic industriel par leurs capacités d’apprentissage et la reconnaissance des formes. L’handicap c’est qu’il n’existe pas de méthodologie formelle pour la conception et la réalisation de ces réseaux en ce qui concerne le choix du nombre de couches, le nombre total de cellules, le choix des règles. Il existe cependant des pistes dans le cadre de l'approximation de fonctions continues [FRA 96].

I.3.6 Diagnostic par les systèmes experts

Les systèmes experts sont basés sur la reproduction du raisonnement d’un expert humain dans un domaine donné. La mise en œuvre d’un système expert est une tâche pluridisciplinaire. Elle fait appel à différentes compétences. On distingue :

- l’expert qui dispose des connaissances et des solutions aux problèmes.
- le cogniticien qui, à partir des connaissances de l’expert, va concevoir une mise en forme du problème.
- l’informaticien pour écrire l’algorithme réalisant le système informatique.
- l’utilisateur : pour exploiter le système expert.

Les systèmes experts permettent de résoudre les problèmes de diagnostic, mais ils trouvent leurs applications dans bien d’autres domaines notamment la planification, la conception, le
Chapitre I - Méthodes de surveillance et de diagnostic

contrôle de processus, la formation, la gestion de configuration et plus généralement diverses formes d’aide à la décision.
La réalisation du système expert doit être envisagée avec la séparation claire entre le modèle de connaissance de l’expert et le formalisme adapté à la mise en œuvre de ce modèle. Le modèle constitue une expression modulaire décrivant le domaine concerné (structure, relation, propriétés) [BENC 86].
A partir de ce modèle, le cogniticien traduit les connaissances en langage formel, en vue d’implanter le système informatique.
Une description structurée du domaine par propriétés doit être réalisée en indiquant comment ces propriétés peuvent être évaluées (par application de fonction, déduction d’autres propriétés, utilisation de ressources externes….)
L’objectif du système expert est d’exploiter cet ensemble de connaissances sous forme informatisée. La méthode utilisée se base sur le raisonnement qui par sa complexité nécessite un certain nombre d’étapes et d’éventuelles imbrications. La modélisation du raisonnement constitue une phase délicate dans l’analyse des connaissances.
Le formalisme de génération de connaissances est constitué de règles de production de la forme « SI » condition, « alors » conclusions (conditions de véracité des expressions). Un moteur d’inférence exploite les règles et les faits et déduit une connaissance formulée généralement sous la forme d'une règle.

Base de faits + Base de règles = Base de connaissance

Limitation des systèmes experts
Comme tout logiciel au champ d’application bien limité, les systèmes experts sont incapables d’avoir un comportement cohérent dès qu’on quitte ce domaine. De plus, il est nécessaire de former des utilisateurs pour une bonne exploitation de cet outil. Toutes ces considérations font du système expert un outil non commode.
Une difficulté spécifique dans la conception de ces outils réside dans la formalisation de la démarche cognitive Fig I-15 [CHAT 93].
Une autre limitation du système expert concerne la prise en compte du temps, notamment pour la description des événements liés au temps qui ont une certaine durée, et du cadencement des événements. Une autre difficulté se présente pour gérer la non monotonie provenant d’un changement de vérité d’un événement.

Evolutivité des systèmes experts

Dans la plupart des cas, l’évolutivité des systèmes experts est étroitement liée à l’évolution même des systèmes (matériel) au cours du temps. Ainsi la modification de ces systèmes nécessite d’apporter des corrections et adaptations qui peuvent remettre en cause parfois la base du raisonnement d’une partie des connaissances contenues dans le système. Pour la réalisation d’une application de type système expert, on peut utiliser des langages informatiques généraux tel que fortran, C, pascal etc. Ces solutions sont peu retenues car elles nécessitent à programmer de façon détaillée des fonctions élémentaires disponibles dans d’autres environnements plus puissants.

Quelquefois on a recours à des langages d’intelligence artificielle classés en trois catégories : langages fonctionnels, langages logiques, langages à objet. Lisp (liste processing langage) étant le prototype le plus utilisé est conçu à partir de langages fonctionnels et constitue un langage interactif de traitement de listes. Malgré les réalisations en Lisp notamment l’intégration de fonction de plus en complexe, celui-ci présente des limitations liées à
l’importance des ressources informatiques nécessaires, aux restrictions de la portabilité des réalisations vers les langages classiques [CHAT 93].

Toutefois, le prototype prolog utilise des langages logiques. Il est basé sur la manipulation de sous ensemble de la logique. Plusieurs travaux sur prolog ont conduit à des versions évoluées. Mais son utilisation impose de s’en servir pour définir les mécanismes de manipulation de connaissances utiles pour le modèle. De plus, il faut une formation pour transposer le problème en terme logique.

Enfin, les langages orienté objet constituent des environnements complets de programmation qui permettent de bâtir une application autour d’entités correspondant à des concepts bien définis et organisés de manière structurée. L’approche par objets confère une convivialité à l’application notamment pour la visualisation, modification des classes, des relations.

Certes, la notion « objet » présente un grand intérêt pour la représentation des éléments de connaissances descriptifs. Cependant, la transposition directe d’un élément de connaissance sous forme d’un objet du langage n’est pas forcément la meilleure solution. Souvent, il est préférable d’adopter la structure recevant la description des éléments de connaissance et ensuite la manipuler effectivement comme objet.

1.4 Concepts de surveillance

Dans ce travail, un intérêt particulier est porté à la surveillance du système de puissance dans le V.E. (Véhicule Electrique) qui est essentiellement un système dynamique. Son modèle dynamique, résultant de l’application des lois fondamentales de la physique, se présente sous forme d’une représentation d’état, dans laquelle on écrit les relations dynamiques entre les entrées et les sorties en explicitant un état (multidimensionnel) évoluant lui-même de manière dynamique [BASS 96].

L’occurrence d’une panne est vue comme une variation d’un ou de plusieurs paramètres par rapport à une valeur de référence θ_0, c'est-à-dire d’une ou plusieurs composantes du vecteur θ.

La surveillance consiste à détecter ces variations de paramètres, à distinguer celles qui résultent de pannes de celles qui résultent de comportements normaux, à décider si ces variations sont effectivement significatives par rapport aux incertitudes sur le modèle et sur la référence θ_0 et aux bruits sur les données mesurées. Le problème du diagnostic est en outre de déterminer les composantes du vecteur paramètre qui sont effectivement modifiées et de trouver les causes, en termes des composants atteints, de ces variations.
I.4.1 Pourquoi surveiller un système ?

Les principales raisons qui conduisent à surveiller un système dynamique sont :
- La conduite ou comportement, qu'il s'agit d'optimiser et qui est une tâche en ligne; par exemple, un tableau de bord dans l’automobile doit fournir à l'opérateur les outils nécessaires à la prise de décision d'actions visant à faire fonctionner le système au mieux en terme de sécurité et de non dégradation des équipements. Ceci passe par la surveillance du système afin de détecter toutes anomalies de fonctionnement et l'identifier aussi bien que possible.
- Un service, qu'il faut assurer. La capacité à détecter, localiser et diagnostiquer les événements indésirables, et à y réagir, est un enjeu crucial.
- La maintenance, qui a pour objet le remplacement ou la réparation d'équipements usés ou défectueux, et que l'on souhaite optimiser. Elle s'effectue le plus souvent hors-ligne : La maintenance corrective intervient après la détection et la localisation d'un défaut; la maintenance préventive est elle le plus souvent systématique. Cependant, la maintenance conditionnelle, qui est une alternative à la maintenance systématique, fait l'objet d'une demande croissante dans un grand nombre d'applications. Cette maintenance est basée sur la surveillance en continu de l’évolution du système, afin de prévenir un dysfonctionnement avant qu'il n'arrive; elle impose donc des traitements en ligne, au moins en partie.
Les enjeux économiques, technologiques et environnementaux de la surveillance sont étroitement liés à des impératifs de sécurité (des hommes et des matériels) et de protection de l'environnement.
Le choix d'une approche en ligne ou hors-ligne pour la surveillance dépend non seulement de l'objectif conduite ou maintenance, mais également des ordres de grandeur relatifs des constantes de temps du système, des différents types d'événements à surveiller, et aussi de l'échantillonnage des mesures disponibles.

I.4.2 Architecture générale

La figure I-16 présente l'architecture générale d'un système de surveillance en ligne. On y retrouve les trois grandes fonctions "Voir ", " Comprendre", " Agir " nécessaires à une bonne surveillance. La fonction de perception s'appuie sur les données acquises par les capteurs du système à surveiller et transmet à l'opérateur des informations plus ou moins élaborées. L'opérateur analyse les informations reçues et décide des actions à entreprendre au travers d'actionneurs qui permettent d'agir sur le système. L'architecture d'un système de surveillance hors-ligne est proche de celle-ci sauf que le flux d'observations ne provient pas directement
des capteurs mais d'une base de données où elles ont été archivées. En outre, les décisions prises sont des actions de remplacement ou de réparation des composants du système.

Fig.I-16 Architecture générale d’un système de surveillance

I.4.3 Les différents niveaux de traitement : du signal à la décision

On peut représenter l'organisation générale des traitements en ligne utiles pour l'aide à la conduite comme indiqué à la figure I-17.

On distingue plusieurs niveaux de traitement possibles :

Le premier niveau concerne le traitement des données capteurs : il a pour première fonction la détection et l'élimination des valeurs aberrantes. Il prend aussi souvent en charge la validation des capteurs eux-mêmes en étudiant, à l'aide de méthodes numériques, la redondance inter-capteurs.
Un second niveau, qui travaille toujours à partir des données capteurs, a pour fonction la génération des alarmes. Les alarmes indiquent l'occurrence d'événements survenus dans le système.

La génération des alarmes se fait, notamment, par un traitement conjoint de plusieurs signaux et utilisant un modèle du système surveillé [WENG 88].

Fig.I-17 Organisation des traitements en ligne

Il est important de souligner que ces deux premiers niveaux Fig.I-17, redondance intercepteurs et génération d'alarmes, constituent un codage numérique/symbolique " intelligent " (symbolique étant l’opposé de numérique) des données capteurs, point crucial pour la
surveillance. En particulier, il est possible de produire directement à ce niveau des alarmes "intelligentes" portant des informations relatives au diagnostic.

Un troisième niveau a pour charge l'interprétation des alarmes. Il doit transformer les alarmes (qui signalent des événements survenus sur le système) en une information utile à l'opérateur dans sa prise de décision. On utilise le filtrage (élimination d'alarmes redondantes); la localisation d'un dysfonctionnement (en faisant par exemple le lien entre signal ou paramètre perturbé et composant en dysfonctionnement); et le diagnostic (recherche de la cause profonde expliquant le phénomène observé). Les événements à l'origine de l'émission des alarmes ne sont pas forcément indésirables. Un des buts de l'interprétation est précisément de le déterminer.

Il convient de souligner que la phase d'interprétation des alarmes dépend directement de l'objectif du système de surveillance. La profondeur dans la recherche de causes est par exemple différente selon que la surveillance est effectuée dans un but d'aide à la conduite ou dans un but de maintenance conditionnelle.

En général la surveillance d'un système comprend ces trois niveaux et suppose donc une intégration de traitements de type purement numérique au niveau 1, de type mixte numérique/symbolique au niveau 2 et plutôt symbolique au niveau 3.

I.4.4 Objectifs d'une "bonne" surveillance

Pour surveiller en continu l'évolution du système et trouver les causes des événements indésirables, il convient d'utiliser au mieux les informations disponibles, qu'elles soient numériques (les données des divers capteurs et actionneurs), ou symboliques (historiques, environnement, événements indésirables survenus antérieurement et réparations effectuées,...). Dans l'optique d'une utilisation optimale des informations disponibles pour la surveillance, deux points méritent d'être soulignés :

Un premier point crucial réside dans le traitement des signaux (données des capteurs et actionneurs) mesurés sur le système, qui doivent être analysés aussi finement que possible afin de limiter au maximum les pertes d'informations et la génération d'alarmes non pertinentes et redondantes. Il s'agit alors :

- à partir des signaux d'extraire des caractéristiques des objets étudiés qui soient pertinentes pour la surveillance;
- d'être capable d'analyser ces éléments afin de détecter perturbations et anomalies; ceci en préservant une robustesse suffisante par rapport aux bruits sur le système, aux
erreurs sur son modèle, et aux incertitudes sur la référence, mais aussi par rapport aux changements de modes de fonctionnement du système;

- de combiner les informations obtenues avec d'autres informations symboliques qui sont disponibles sur le système et indispensables à sa surveillance. En particulier, que ce soit pour la conduite ou la maintenance conditionnelle, la détection précoce de déviations faibles par rapport à une caractérisation du système en mode de fonctionnement normal (sans excitation artificielle, ni ralentissement, ni arrêt) s'avère d'un grand intérêt.

Le second point crucial est l'adaptation des réponses fournies par le système de surveillance aux besoins des opérateurs chargés de les utiliser. En effet, la prise en compte du contexte général de la surveillance et du niveau des réponses attendues est nécessaire. Ceci explique l'intérêt d'une interprétation des alarmes s'appuyant sur des connaissances symboliques. On est alors en mesure d'expliquer et/ou de justifier les jugements portés sur le système ou les décisions proposées. Ceci passe par la définition d'une interface appropriée et ergonomique, très importante pour la surveillance mais reste en dehors du champ de notre travail.

Ces deux points mettent bien en relief une caractéristique de la surveillance, qui requiert le passage d'une information numérique à une information symbolique et la nécessité d'aller-retour entre ces deux types d'informations. Le cahier des charges est très important pour concevoir un système de surveillance. Il précise les pannes qui doivent être détectées, localisées, sont-elles brutales ou graduelles, de quelles informations l'opérateur a besoin pour réagir . . .

Un autre point en aval de la surveillance proprement dite est celui du choix du type des capteurs, de leur nombre et de leur positionnement les plus adéquats pour la surveillance. Des critères permettant de quantifier la qualité d'un jeu de capteurs pour la surveillance peuvent naturellement être associés à des algorithmes de détection. Ces critères quantitatifs permettent de qualifier un positionnement de capteurs pour la surveillance et le diagnostic. Il peut arriver qu'un défaut donné soit plus facilement diagnosticable avec un sous-ensemble des mesures qu'avec toutes les mesures traitées de manière conjointe. En effet, rajouter des capteurs permet d'accroître l'information mais aussi le bruit, ceci est particulièrement crucial pour la surveillance des vibrations [THOM 02].

I.4.5 Génération des alarmes

Le niveau 2 de la figure I-17 concerne l’étape de génération d'alarmes (détectio). Différentes méthodes existent, basées sur des concepts et techniques variées et s'appuyant sur différents
modèles du système surveillé notamment des méthodes statistiques du traitement du signal et des méthodes de l'intelligence artificielle permettant la génération des alarmes et leur interprétation.

I.4.5.1 différents niveau de génération d’alarmes

La génération d'alarmes peut intervenir à deux niveaux. Au niveau d'un capteur, sur lequel on procède à une segmentation automatique en zones homogènes et à la détection d'événements indésirables, par exemple de type transitoire. Ce traitement ignore le plus souvent le modèle du système surveillé dans son ensemble. Il peut être réalisé à l'aide d'algorithmes basés sur des modèles boîte-noires. Au niveau de plusieurs capteurs que l'on analyse à l'aide d'algorithmes basés sur tout ou partie du modèle physique du système surveillé. À ce niveau purement numérique de traitement des signaux, on peut générer des alarmes intelligentes, contenant des informations de diagnostic de haut niveau, sous la forme des composants responsables de l'alarme déclenchée.

I.4.5.2 types de modèles utilisés

La génération d'alarmes repose le plus souvent sur l'utilisation de modèles numériques. En général, deux types de modélisation sont utilisés : la modélisation physique et la modélisation boîte-noire. La surveillance peut être effectuée même en l'absence d'un modèle de connaissance (physique) du système. On peut alors lui substituer un modèle boîte-noire, de type réseau de neurones ou réseau d'Ondelettes, ce qui revient à comprimer l'information disponible dans les mesures en un vecteur de paramètres de dimension finie (les poids du réseau, les coefficients caractéristiques de la fonction de base, translation et dilatation par exemple).

I.4.5.3 Les étapes de la génération d'alarmes

La génération d'alarmes la plus élémentaire consiste à confronter directement les données mesurées à des seuils préétablis. Ce traitement direct sur le signal contribue le plus souvent à une perte d'informations importante, et à une génération d'alarmes non pertinentes et nombreuses. Elles sont, en outre d'autre part très sensibles aux seuils qui sont difficiles à régler.
Il existe des méthodes plus élaborées, et pas nécessairement très coûteuses en calculs, qui permettent une génération d'alarmes plus pertinente. On peut alors distinguer deux composants principaux :

- Une transformation des données \(Z = f(Y) \) en un vecteur de résidus \(Z \) (\(Y \) étant les données). Celui-ci se doit d'être idéalement nul en l'absence de déviations et significativement non nul en leur présence.
- Une stratégie permettant d'évaluer les résidus et donc de décider du caractère significatif des déviations qui se produisent, vis-à-vis des bruits, des erreurs de modélisation, des changements de modes de fonctionnement ... Cette décision peut consister en une simple détection d'anomalies, comporter un aspect de diagnostic quant à la localisation et l'interprétation physique de cette anomalie. L'alarme est alors qualifiée d'alarme intelligente qui est à la fois significative et porteuse d'une information reliant l'anomalie au composant physique responsable de celle-ci [GENT 97].

I.4.5.4 Les méthodes de génération d'alarmes

Plusieurs méthodes permettent d'aborder les deux principales étapes de transformation et de décision (détectio et diagnostic).

1.4.5.4.1 Transformation des données ou génération de résidus

Il s'agit de définir une transformation des données \(Z = f(Y) \) en vecteur de résidus qui reflète au mieux la présence d'une déviation par rapport à une référence, tout en étant le moins possible sensible aux diverses perturbations et erreurs sur le système et sur la référence. Ce vecteur sera ensuite évalué pour décider de l'occurrence ou non d'événements significatifs. On distingue deux types de méthodes :

1. les méthodes géométriques, qui exploitent les propriétés (algébriques ou géométriques) du modèle dynamique, le plus souvent linéaire, du système considéré. Il s'agit essentiellement de transformées des données initiales, linéaires elles-aussi, de type observateur ou relations de redondance analytique ;
2. les méthodes statistiques, concernant essentiellement ce que l'on appelle les statistiques exhaustives, autrement dit les transformées des données initiales qui ne perdent pas d'informations quant aux caractéristiques propres de ces données.
En fait, les méthodes statistiques résolvent le plus souvent de manière simultanée les deux problèmes de transformation des données (ou génération de résidus) et de décision (évaluation des résidus et génération d'alarmes).

Le principal avantage des méthodes géométriques est qu'elles exploitent les propriétés de structure du modèle dynamique, en particulier d'observabilité de l'état du système considéré, s'il s'agit d'un système à représentation d'état. L'inconvénient est qu'elles ne donnent pas de mesure du caractère significatif des déviations observées.

1.4.5.4.2 Décision pour la génération d'alarme

Il s'agit de détecter, de manière précoce, pour un traitement en-ligne des déviations par rapport à une caractérisation du système en mode normal, c'est-à-dire sans perturbation externe, ni ralentissement, ni arrêt.

Une référence (ou signature) est une caractérisation effectuée au moyen d'une modélisation paramétrique, de vecteur de paramètre θ dont la valeur de référence est θ_0. Disposant donc d'une référence et de nouvelles mesures, il s'agit de décider si ces mesures sont toujours décrites convenablement par cette référence ou s'il s'est produit un changement significatif de comportement [CORD 96]. Deux solutions, schématisées par la figure I-18, sont envisageables :

- Acquisition d'une nouvelle référence θ_1, et comparaison des deux références θ_0 et θ_1 à l'aide d'une distance convenable.

Cette méthode de surveillance présente certains inconvénients. Elle nécessite l'intervention d'un opérateur humain. Son succès dépend du bon choix de la mesure de distance entre deux références.

- comparaison directe des nouvelles mesures à la référence disponible. Il s'agit alors de calculer une transformation convenable des données, en utilisant la référence. C'est d'une certaine façon ce que font les méthodes géométriques de génération de résidus. C'est aussi ce que font les méthodes statistiques.
I.4.5.5 Les critères de la génération d'alarmes

La conception des algorithmes de génération d'alarmes est liée à la nature hors-ligne ou en ligne des traitements effectués en vue de la détection.

Nous distinguons trois problèmes de détection qui découlent de trois façons de générer des alarmes.

- **Validation de modèle** : On dispose d'une part d'une référence θ_0 et d'autre part d'un enregistrement de N nouvelles mesures. On cherche à décider si les nouvelles mesures sont bien décrites par la référence. Ce problème peut être posé hors-ligne (N fixé) ou bien en ligne (échantillon de taille N variable).

- **Détection de changement hors-ligne** : On dispose d'un enregistrement de N nouvelles mesures. On cherche à décider si, à l'intérieur de cet enregistrement, il y a un changement de paramètre, de la valeur θ_0 à la valeur θ_1, se produisant à l'instant inconnu t.

- **Détection de changement en ligne** : À chaque instant t, on cherche à décider si, à l'intérieur de l'enregistrement, il y a un changement de paramètre, de la valeur θ_0 à la valeur θ_1, se produisant à l'instant inconnu x.

La détection de changement (en ligne) constitue le problème le plus difficile puisque nous utilisons moins de données, et donc moins d'informations.

I.5 Conclusion

En guise de conclusion à cette présentation générale des méthodes statistiques de traitement du signal et des méthodes de l'intelligence artificielle pour la surveillance et le diagnostic de
systèmes dynamiques, nous avons choisi d’attirer l’attention sur quatre points qui nous semblent importants et qui nous permettront d'évaluer et de comparer les différentes solutions proposées à ce problème de surveillance. Ce sont :

- Les difficultés liées à l'acquisition des informations nécessaires, en particulier pour l’élaboration des modèles,
- La capacité à prendre en compte l'incertain et l'imprécision, problème incontournable lorsque l'on veut traiter des systèmes réels,
- La multiplicité des outils proposés et leur capacité à évoluer selon l'évolution du système surveillé,
- La validation (ou l'évaluation) des résultats obtenus.
Chapitre I - Méthodes de surveillance et de diagnostic
Chapitre II
MODELISATION ET SIMULATION
Chapitre II- Modélisation et simulation

Sommaire II

Chapitre II- MODELISATION ET SIMULATION ... 53
II.1 Introduction .. 57
II.2 Le système de puissance embarqué dans le V.E ... 58
 II.2.1 Les nouveaux challenges ... 59
 II.2.2 Les mécanismes de défaillances dans les systèmes de puissance 60
II.3 Les méthodes de modélisation .. 62
 II.3.1 Insulated Gate Bipolar Transistor (IGBT) – fonctionnement 64
 II.3.2 Modélisation en électronique de puissance : état de l’art 72
 II.3.3 Modèle élaboré de l’ IGBT ... 77
 II.3.4 Diode de puissance .. 98
 II.3.5 Modélisation comportementale de la diode ... 106
 II.3.6 Modélisation thermique ... 112
II.4 Simulation .. 136
 II.4.1 Modélisation du convertisseur statique de puissance 137
 II.4.2 Résultats de simulation ... 138
II.5 Conclusion .. 140
II.1 Introduction

Le véhicule électrique est conçu pour la motorisation électrique. Cette dernière propose des performances exceptionnelles comparées à celles d'un moteur thermique, en particulier un couple élevé et constant dès les bas régimes.

Le véhicule "tout électrique" peut être motorisé de différentes façons selon le degré de simplification mécanique de la chaîne de traction. Cette dernière peut être constituée, dans la version la plus archaïque, d'un moteur unique associé à un embrayage et à une boîte de vitesses et, dans la version la plus avancée, de deux ou quatre moteurs intégrés dans les roues pour leur entraînement direct. Nous considérons ici une solution intermédiaire justifiée par des considérations économiques, et qui comprend un moteur unique de traction associé à un réducteur de rapport fixe et un différentiel pour l'entraînement des roues avant. Dans ces conditions, pour satisfaire les besoins du véhicule (démarage en côte, possibilités d'accélération et vitesse maximale), le moteur doit être capable de délivrer son couple maximal de l'arrêt à une vitesse dite de base, où il atteint sa puissance maximale, puis de maintenir cette puissance jusqu'à une vitesse maximale égale à 3 à 5 fois la vitesse de base. Pour remplir cette fonction, le moteur électromagnétique doit être contrôlable en couple et pouvoir être "défluxé" dans la plage dite "à puissance maximale constante" Fig. II-1.

Fig.II-1 Chaîne classique de traction électrique

Toutefois, la boîte de vitesse qui équipe encore actuellement plusieurs types de véhicules électriques est appelée à disparaître grâce à la très grande souplesse du moteur électrique.
II.2 Le système de puissance embarqué dans le V.E

Les travaux menés sur la conception des chaînes de traction consistent à rechercher des méthodes permettant de déterminer les architectures, les composants et les stratégies de gestion de l'énergie répondant au mieux à l'ensemble des missions assignées au véhicule. Cette recherche passe par le développement et l'exploitation de modèles décrivant la chaîne de traction dans son environnement complet, en prêtant une attention particulière à la description des flux d’énergie et des couplages.

Schématiquement, la chaîne de traction d'un véhicule électrique peut se résumer à trois organes : le variateur électronique comprenant un convertisseur de puissance et sa commande, le moteur électrique de traction et la batterie Fig. II-2.

Dans ce travail nous considérons le système de puissance embarqué dans le V.E composé d’une partie commande (électronique de puissance) et la partie moteur électrique.

Le variateur électronique

Depuis le début du siècle, le principe même des moteurs électriques n'a guère évolué. En revanche, les progrès de l'électronique de puissance ont permis de faciliter la commande de ces moteurs et ont rendu possible l'apparition de nouveaux types à rendement plus élevé. Ainsi, les hacheurs de courant sont devenus indispensables pour la commande des moteurs à courant continu. Quant aux moteurs à courants alternatifs, synchrones ou asynchrones, ce sont les convertisseurs de courant continu/alternatif, appelés onduleurs, qui ont permis d'apporter les plus grandes améliorations. En effet, cette alimentation confère une grande robustesse au
dispositif d'entraînement complet. L’emploi des modules IGBT dans les chaînes de traction asynchrones des transports urbains a montré des gains appréciables en matière de coût des onduleurs (à l’acquisition et à l’exploitation), de masse et de fiabilité.

Les moteurs électriques

Les différentes chaînes de propulsion électrique peuvent être classées selon cinq catégories à partir de solutions comportant plus de mécanique vers des solutions plus élaborées sur le plan électrique et électronique (voir annexe moteur).

- Les moteurs à courant continu (M.C.C.) à excitation séparée, sont commandés par un hacheur de puissance agissant sur l’induit du moteur et un hacheur de plus faible puissance commandant l’excitation ou inducteur. Dans la traction électrique automobile, c'est le système le plus employé car il offre, actuellement, le meilleur compromis performances/prix grâce à un convertisseur électronique simple. Cependant, le M.C.C a quelques limites intrinsèques liées à son collecteur et à ses enroulements d'induit situés au rotor, principalement la fréquence de maintenance et la puissance massique.

- Les moteurs asynchrones : ce sont les moteurs les plus répandus actuellement dans le domaine industriel grâce à la faiblesse de leur coût de fabrication, et à leur grande robustesse. Ce sont des moteurs sans entretien : un simple refroidissement est nécessaire pour le stator. Leur commande nécessite l'emploi d'un onduleur électronique afin de convertir le courant continu des batteries en courant alternatif triphasé, et de contrôler avec précision le fonctionnement du moteur en régime permanent et pendant les phases d'acélération. De plus, l'onduleur transforme le courant alternatif généré par le moteur durant les décelérations et le freinage en courant continu pour recharger la batterie.

- Les moteurs synchrones à aimants permanents ont une puissance massique et un rendement élevés. Leurs coûts élevés restent le plus gros handicap.

D'autres technologies comme les moteurs à réluctance variable ou les moteurs roues, encore en phase de mise au point, pourraient présenter des avantages spécifiques indéniables qui devraient jouer un rôle décisif dans le développement du véhicule électrique (voir annexe moteur).

II.2.1 Les nouveaux challenges

Les avantages des chaînes de traction en termes de coût et d’encombrement ont permis d’en faire une solution largement choisie par les opérateurs de transports en commun, de passagers et de marchandises. Des efforts de standardisation des modules de puissance utilisés dans les chaînes de traction ont été accomplis en parallèle de manière à réduire l’encombrement et le
coût. Ceci n’a été possible qu’à travers une collaboration étroite entre les différents acteurs industriels lors des phases de spécification et de développement de certains composants notamment les IGBTs.

Toutefois, des nouveaux challenges sont à relever. En ce qui concerne le pilotage du système de puissance, particulièrement l’onduleur à IGBT, des stratégies innovantes auront à être développées pour assurer la fiabilité ainsi que la sûreté de fonctionnement à l’ensemble du système. L’influence de l’emploi des convertisseurs à IGBT sur l’environnement devra également être étudiée, il convient de garantir la compatibilité électromagnétique et les niveaux des harmoniques hautes fréquences. Cette problématique nous amène à créer et à valider des outils de modélisation et de simulation adaptés afin de répondre aux besoins et d’anticiper les nouvelles exigences technico-commerciales.

II.2.2 Les mécanismes de défaillances dans les systèmes de puissance

La plupart des systèmes de puissance opèrent dans un environnement nécessitant une variation rapide de vitesse, caractérisé par des arrêts / démarrage fréquent et une surcharge permanente. Les circuits, particulièrement les dispositifs de commutation à semi-conducteur peuvent être l’objet d’un abus constant de sur intensité et un dépassement de tension. Bien que les circuits de protection « snubber » sont souvent utilisés pour alléger le stress, l’occurrence de défaut tel que la défaillance d’un transistor de puissance, court circuit d’une diode en antiparallèle… peuvent ne pas engendrer des catastrophes instantanées mais ils affectent les performances du circuit de commande [FILI 01] [ELAN 01].

Les défauts souvent rencontrés dans le convertisseur de puissance de la Figure II-2 sont dus à [FUCH 03] :
- défaut dans le bus continu d’alimentation, défaut de court circuit de la capacité de liaison,
- défaut dans le semi-conducteur de puissance (transistor, diode) qui est soit en court circuit ou en circuit ouvert,
- défaut dans les capteurs de courant et de tension,
- défaut dans les équipements de contrôle.

On relève à la littérature [THOR 95] que 50% des défaillances des convertisseurs affectent le circuit de contrôle, 37.9% des défaillances concernent la partie puissance et 7.7% sont au niveau des systèmes de refroidissement. Ces pourcentages d’apparition de défauts, nous donnent une idée sur leurs distributions pour un fonctionnement en commutation des convertisseurs. Outre ces résultats montrent que l’occurrence des défauts dans le convertisseur est au niveau des composants de puissance qui peuvent être le résultat d’un défaut dans le
Chapitre II- Modélisation et simulation

système de refroidissement ou d’un mauvais choix de composants de point de vue fiabilité et/ou dimensionnement. Généralement on distingue deux classes de mécanisme de défaillance pour les composants électroniques.

La première classe concerne les défauts EOS (Electric Over Stress) qui engendre un dépassement de l’aire de sécurité [Table II-1]. L’EOS provient, généralement, d’un changement immédiat dans la structure du composant qui résulte d’un défaut catastrophique.

<table>
<thead>
<tr>
<th>Mécanisme de défaillance</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claquage en courant</td>
<td>Densité de courant</td>
</tr>
<tr>
<td></td>
<td>Température environnementale</td>
</tr>
<tr>
<td>Fissure thermique</td>
<td>Puissance dissipée</td>
</tr>
<tr>
<td></td>
<td>Température environnementale</td>
</tr>
<tr>
<td>Claquage en haute tension</td>
<td>Champ électrique</td>
</tr>
<tr>
<td></td>
<td>Température environnementale</td>
</tr>
<tr>
<td>Effet de fermeture (cas de la diode en particulier)</td>
<td>Vitesse de re-polarisation (dv/dt)</td>
</tr>
<tr>
<td></td>
<td>Vitesse de la charge (di/dt)</td>
</tr>
<tr>
<td>Effet d’ouverture (cas de la diode en particulier)</td>
<td>Charge stockée</td>
</tr>
<tr>
<td></td>
<td>Vitesse de re-polarisation (dv/dt)</td>
</tr>
<tr>
<td></td>
<td>Courant/Tension inverse maximum</td>
</tr>
</tbody>
</table>

Table II-1 Les défauts dus à l’Electric Over Stress

La deuxième catégorie concerne l’aspect intrinsèque du composant qui se traduit par un effet de fatigue. Par exemple le passage d’un fort courant dans la structure du composant de puissance peut engendrer un changement dans les propriétés physiques internes et une apparition de défauts.

Par conséquent, la fiabilité des systèmes et l’étude des régimes extrêmes sont deux éléments indissociables. En effet, les régimes extrêmes (représentant la surcharge en tension et en courant), le court-circuit, le fort dI/dt et dV/dt, constituent une épreuve redoutable pour les composants semi-conducteurs et entraînent souvent leur destruction. D’où la nécessité de la modélisation des régimes extrêmes. Elle permet de mettre en évidence les phénomènes internes du silicium, notamment la température, en relation avec les paramètres externes mesurables (courant, tension et pertes) et d’identifier finement les zones frontières paramétriques à partir desquelles les composants risquent d’être incapables d’assumer
correctement leur fonction ou d’être détruits. En d’autres termes, ces zones constituent le passage entre les états normaux (ou permis) et les états anormaux (ou interdits).
Il existe d’autres mécanismes de défaillance de long terme tel que la corrosion, l’électromigration et la fatigue thermique qui sont dues respectivement à l’humidité, à la densité de courant et au cyclage thermique.
Par ailleurs, les machines à courant alternatif sont quelquefois le siège de défauts quand elles sont utilisées dans les entraînements à vitesse variable car elle sont conçues pour opérer sous une alimentation sinusoidale sans harmonique de hautes fréquences. Les composantes de défaillance sont :
- les enroulements statoriques,
- les barres au rotor ou les enroulements,
- l’arbre et couplage mécanique
D’autres défauts externes sont dus au :
- défaut de phase,
- dissymétrie dans l’alimentation,
- surcharge mécanique,
- rotor bloqué,
- Sous charge.
En conclusion, le composant de puissance IGBT, qui constitue l’élément de base (déterminant) dans le convertisseur de puissance, joue un rôle essentiel dans le système de puissance. En effet, le composant de puissance, qui est le siège de transferts énergétiques très importants, semble la source la plus évidente de défaillance dans les circuits électroniques de puissance.

II.3 Les méthodes de modélisation

L’analyse prévisionnelle de fiabilité s’avère nécessaire afin d'évaluer la fiabilité globale du système à partir de modèle de composant. L'obtention de ces modèles est particulièrement délicate dans le cadre spécifique considéré, du fait des grandes dispersions de contraintes (formes et amplitudes des contraintes électriques, ambiance, température et cycles thermiques) qui est susceptible de subir un même composant, selon le convertisseur et l'application dans lequel il se trouve plongé.
Dans cet objectif, les outils de simulation électronique permettent d’optimiser et de rationaliser précisément le schéma électronique, notamment en faisant appel à de nouvelles
technologies de composants. En effet, les outils de simulation ont pris toute leur importance et permettent de mettre en œuvre une architecture spécifique réduisant de manière significative la température de fonctionnement. La corrélation entre les calculs/simulations et les essais de validation permettent d'évaluer avec une précision suffisante le comportement du composant et par la suite du système.

Notre travail s'inscrit dans le cadre d’une action de fiabilité du système de puissance. Elle consiste à concevoir et à réaliser des bancs de test permettant de simuler le système de puissance embarqué dans le véhicule électrique. L'objectif est de disposer d’un outil permettant d'alimenter notre réflexion avec des données de défaillance parfaitement maîtrisées et une meilleure connaissance du système de puissance grâce aux simulations et aux essais expérimentaux. Cette démarche passe inéluctablement par la mise en œuvre d’un système de surveillance.

Les résultats restitués qui devront être complétés par des analyses physiques des composants défaillants, pour connaître et comprendre les principaux mécanismes de défaillance et leur dépendance par rapport aux contraintes environnementales, permettront de construire une base de données [ZHAN 95]. Son exploitation devrait déboucher sur l’élaboration de modèles paramétriques susceptibles d’être utilisés dans des analyses de fiabilité prévisionnelle ou de sûreté de fonctionnement.

L’étude de la sûreté de fonctionnement globale du système dépend :

- des diagnostics locaux effectués sur les divers composants de l’ensemble ;
- des interactions entre les différents constituants du système (par exemple l’influence du vieillissement voire de la panne d’un IGBT du convertisseur).

Notre approche se résume en trois volets :

Un premier niveau de traitement consiste à mener des analyses locales des éléments du système (éléments passifs et actifs du convertisseur et les dysfonctionnements pouvant apparaître sur l’ensemble convertisseur/machine). Les méthodes de diagnostic nécessaires à la détection d’un défaut ou d’un vieillissement peuvent faire appel à des modèles comportementaux des systèmes perturbés à partir desquels on en déduit des signatures (indicateurs de défauts).

A partir des connaissances acquises lors du diagnostic local, une approche plus globale doit être menée. Elle consiste à étudier l’interaction entre les différentes composantes d’un système afin d’analyser la répercussion d’une panne ou du vieillissement d’un composant sur l’ensemble du dispositif étudié. Nous élaborerons une méthodologie générale pour prendre en compte ces interactions, basée sur une modélisation globale du système et sur une analyse de
la sensibilité d’un sous-système aux variations des paramètres des autres sous-systèmes. A titre d’application, nous mènerons une étude sur un ensemble machine convertisseur pour lequel sera analysée l’incidence de dysfonctionnement du convertisseur ou de la machine asynchrone sur le fonctionnement du système.

Ce niveau de préoccupation concerne la supervision et correspond structurellement au niveau le plus élevé du traitement de la sûreté de fonctionnement. Il s’agit ici, en s’appuyant sur les diagnostics locaux faits au niveau des composants, de définir une approche « sûreté hiérarchisée » prenant des décisions à chaque niveau de système pour conduire à des stratégies de maintenance prédictive et de fonctionnement en mode dégradé.

Une première étape dans cette démarche consiste à développer un modèle d’interrupteur de puissance composé d’un IGBT avec une diode en antiparallèle qui tient compte des non linéarités des semi-conducteurs tel que les pertes en commutation, les caractéristiques statiques et le temps mort entre les commandes des interrupteurs du même bras. Ce modèle permettra les simulations électrothermiques des convertisseurs statiques, et par conséquent l’estimation des températures de jonctions dans les différents semi-conducteurs ainsi que la surveillance des grandeurs mesurables tel que le courant, la tension … Il permet aussi d’analyser les modes de défaillances.

II.3.1 Insulated Gate Bipolar Transistor (IGBT) – fonctionnement

L’IGBT (Insulated Gate Bipolar Transistor) est un composant de puissance intégrant dans une même structure un transistor MOS et un transistor bipolaire. Leur association permet à l’IGBT d’allier les avantages de ces deux éléments en terme de bipolarité et de modulation de la conductivité. Depuis sa création, au début des années 80, les progrès technologiques apportés ont fait de l’IGBT un composant célèbre, présent dans diverses applications notamment l’entraînement dans le véhicule électrique.

En fonctionnement normal, la cathode d’un IGBT à canal n (Fig.1 en annexe 3) est reliée à la masse et une tension positive est appliquée sur la grille pour créer une couche d’inversion dans le puits P sous l’électrode de la grille formant ainsi un canal type n. Pour une tension d’anode suffisamment grande, des électrons sont injectés depuis la source n ++ vers la région N - à travers le canal créé, et des trous sont injectés dans la région N - depuis le substrat P + (anode) [BALI 87].

Le courant d’électrons, transitant par le canal, est le courant drain-source du MOSFET \(I_{MOS} \) est également le courant de base du transistor PNP. Le courant de trous constitue le courant du
collecteur du transistor PNP. Le courant total de l’IGBT \(I_{CE} \) est la somme des courants de trous et d’électrons.

II.3.1.1 Caractéristiques de l’IGBT

Pour des raisons inhérentes aux mécanismes physiques mis en jeu, la réalisation par des éléments semi-conducteurs des fonctions d’interrupteurs qu’exige l’électronique de puissance est imparfaite. En effet les états passant et bloqué sont bornés par des valeurs limites de courant et de tension et dégradés respectivement par une chute de tension et un courant de fuite, ce qui implique une dissipation de puissance et l’échauffement du silicium. De même, le basculement d’un état à un autre, qui nécessite des conditions de commandes adaptées, n’est pas instantané. Il dépend de la dynamique des porteurs de charge dans le silicium, avec comme conséquence la génération de pertes de commutation et la limitation de la fréquence de fonctionnement [SHEN 00].

Par conséquent, la caractérisation du composant de puissance et l’évaluation des contraintes qu’il génère ou qu’il subit ne se limitent pas à l’indication des niveaux de tension bloquée ou de courant passant mais font intervenir d’autres grandeurs : niveau de commande, durée des phases successives de la commutation, taux de variation \(dI/dt \) et \(dV/dt \) du courant et de la tension ainsi que la température du silicium (non accessible).

En définitif, les principaux objectifs de performance concernent la tension blocable et le courant admissible dont le produit représente la puissance théoriquement commutable, les niveaux de commande en courant et en tension, les temps d’ouverture et de fermeture, les pertes de puissance dans les états statiques et en commutation et les limites de sécurité.

II.3.1.1.1 Caractéristiques statiques

Etant composé de deux éléments, l’IGBT produit un courant qui est la somme du courant circulant dans le MOS et d’un courant bipolaire. Dans les IGBT modernes 80% à 90% du courant IGBT passe dans le MOSFET ainsi on a :

\[
I_{C(IGBT)} = I_{E(PNP)} = -I_{C(PNP)} - I_{B(PNP)} = I_D - I_{B(PNP)} \quad \text{(Eq II.1)}
\]

\[
I_{C(IGBT)} = I_D - \beta_{PNP} I_D = I_D (1 + \beta_{PNP}) \quad \text{(Eq II.2)}
\]

\[
I_{C(IGBT)} = (1 + \beta_{PNP}) I_{MOS} \quad \text{(Eq II.3)}
\]

avec \(I_C, I_E \) et \(I_D \) sont respectivement les courants collecteur, emetteur et drain.
En négligeant les effets de la partie bipolaire qui n’intervient pas directement sur le pincement du canal, alors le courant de drain \(I_D \) (= \(I_{MOS}=I_{canal} \)) est commandé par la tension \(V_{ge} \) selon trois cas :

- Pour \(V_{ge} < V_T \), le transistor MOS n’est pas commandé, le canal n’est pas entièrement formé. Par conséquent le courant \(I_{MOS} \) est nul. \(V_T \) représente le seuil de création du canal du MOS et par analogie celui de l’IGBT.

- Pour \(V_{ge}-V_T > V_{ce} \), le courant \(I_{MOS} \) est donné par la relation suivante :
 \[
 I_{MOS} = K_p \left(V_{ge} - V_T \right) V_{ce} - \frac{K_p}{2} V_{ce}^2
 \] (Eq II.4)

- Pour \(V_{ge}-V_T < V_{ce} \) :
 \[
 I_{MOS} = \frac{K_p}{2} \left(V_{ge} - V_T \right)^2
 \] (Eq II.5)

La caractéristique de sortie \(I_C(V_{CE}) \) est constituée de quatre zones principales Fig II-3:

- **Zone de blocage** : elle correspond, par analogie au MOS, à \(V_{ge} < V_T \) et/ou \(V_{CE} < V_f \) où \(V_f \) représente le seuil de conduction de la jonction base-émetteur du PNP. Le courant \(I_C \) est nul.

- **Zone linéaire ou ohmique** : la tension de commande de grille \(V_{ge} \) et la tension \(V_{CE} \) sont supposées supérieure à leurs seuils. Le courant \(I_C \) (IGBT) est une fonction linéaire de \(V_{CE} \). Par analogie au MOS on peut écrire \(I_C(IGBT) = R_{dn} V_{CE(IGBT)} \) où \(R_{dn} \) représente la somme de la résistance du drain et celle de la base modulée du PNP. Cette dernière est faible lorsque l’IGBT est en conduction. La résistance \(R_{dn} \) est faible par rapport à
la résistance d’un MOS classique de même calibre que l’IGBT manipulé. Ainsi, la chute de tension est inférieure à celle d’un MOS classique et supérieure à celle d’un bipolaire.

- Zone quasi-saturée : Dans cette zone, l’IGBT est manipulé à des tensions grille-source V_{ge} élevées et à des tensions V_{CE} faibles. Elle est caractérisée par les coudes des caractéristiques $I_C (V_{CE})$ correspondant au passage de la zone linéaire à la zone saturée.
- Zone saturée : c’est la zone de pincement du canal de la partie MOS. Dans celle-ci, le courant I_C est constant indépendant de la tension V_{CE}.

II.3.1.1.2 Caractéristiques dynamiques

Généralement, les composants de puissance ne travaillent que dans deux états extrêmes : l’état bloqué et l’état saturé. Les régimes transitoires correspondant aux changements d’état qui accompagnent soit le passage de la conduction au blocage, soit le passage du blocage à la conduction sont respectivement les commutations à l’ouverture et à la fermeture.

Les temps relatifs aux commutations sont intrinsèquement liés aux constantes de temps de la dynamique des charges stockées dans le silicium. Mais, ils dépendent aussi de l’environnement « circuit » du composant (condition de commande, nature de la charge, présence ou non des circuits d’aide à la commutation).

Une deuxième catégorie de transitoire correspond aux surcharges en direct qui se traduisent par une conduction excessive, les surcharges en inverse (le passage du blocage sans courant au blocage avec courant). En effet, lorsqu’un composant de puissance est commuté à l’état passant, le courant total lui est imposé par le circuit extérieur.

Pour des composants de grande taille ou pour des modules de puissance comportant des puces en parallèle, la dissipation transitoire de puissance entraîne une répartition non homogène de la température qui a pour effet la redistribution du courant à l’intérieur du composant. Nous nous étendrons sur ces aspects plus loin (§-3).

Dans la majorité des cas, les IGBTs sont utilisés dans une configuration de "commutation dure" de part la topologie d’association simple du circuit et de son faible coût. Le comportement en commutation de l’IGBT notamment à l’ouverture, dans un fonctionnement sur charge inductive, est tributaire de la diode de roue libre. En outre, les composants parasites des circuits telles que les inductances parasites ont des effets significatifs sur le composant en particulier pour des commutations rapides [AZZO 98].
Pour présenter les principales caractéristiques électriques de l’IGBT pendant les phases de commutation, nous allons raisonner sur le circuit de la Fig.II-4. On se place dans les conditions de fonctionnement sur charge inductive idéalement clampée (le phénomène de recouvrement inverse est négligé à ce stade). Ce circuit permet d’étudier le fonctionnement de l’IGBT en mode de commutation dure.

II.3.1.2 l’ IGBT en Commutation

II.3.1.2.1 Commutation à la fermeture

Le scénario étudié est le suivant :

Alors que la diode de roue libre conduisait le courant I_M, la tension V_G passe brusquement de la valeur V_{GG-} à V_{GG+} afin de commander à la fermeture l'IGBT.

L’ IGBT étant un transistor à grille isolée, la commutation pendant la phase de fermeture est commandée par la partie MOS du composant. Les courbes idéalisées de commutation sont présentées par la figure II-5.

Pendant la durée t_0, le transistor est bloqué ($V_{GE}<V_{seuil}$). La tension V_{CE} est égale à V_{BUS} et la tension V_{GE} croit exponentiellement avec la constante de temps τ_1 :

$$\tau_1 = R_G C_{ies}$$ \hspace{1cm} (Eq II.6)

avec R_G : résistance de grille et C_{ies} : capacité d’entrée équivalente de l’IGBT.

Lorsque la tension V_{GE} atteint la valeur V_{seuil}, le transistor commence à conduire et le courant dans la diode D_f décroît. Tant que la diode conduit $V_{CE} = V_{BUS}$ et la tension V_{GE} continue à évoluer exponentiellement. Simultanément le courant collecteur augmente suivant la loi :

$$\frac{dI_C}{dt} = g_m \frac{dV_{GE}}{dt}$$ \hspace{1cm} (Eq II.7)
En linéarisant la caractéristique de transfert $Ic(V_{ce})$ et en assimilant l’évolution de la tension V_{GE} à une portion de droite. On voit que le courant Ic croit linéairement pendant toute la durée t_1. Sa vitesse de croissance est d’autant plus élevée que la valeur de la résistance R_G est faible. Lorsque le courant I_C atteint la valeur I_M, la diode D_f se bloque et la tension V_{CE} commence à décroître. Par suite de l’effet Miller, la capacité d’entrée du transistor augmente et devient égale à :

$$C_{in} = C_{ge} + (1-Av)C_{gc} >> C_{ies} \quad \text{(Eq II.8)}$$

Avec

C_{in} : capacité d’entrée équivalente de l’IGBT suite à l’effet Miller,

C_{ge} : capacité grille-émetteur de l’IGBT,

Av : gain en tension,

C_{gc} : capacité grille-collecteur de l’IGBT,

Et la tension V_{ge} ne s’accroît que très faiblement pendant la durée t_2.

Fig.II-5 Courbes idéalisées de la phase de fermeture
Chapitre II- Modélisation et simulation

Lorsque la valeur de la tension V_{CE} se rapproche de la valeur finale $V_{CE(on)}$, le gain en tension $|A_v|$ du montage et sa capacité d’entrée diminuent. La tension V_{GE} reprend alors sa croissance avec la constante de temps :

$$\tau_2 = R_G C_{ies} < \tau_1$$ \hspace{1cm} (Eq II.9)

La décroissance de la tension V_{CE} se poursuit ensuite pendant la durée t_3, ce qui s’explique par le retard à la conduction du transistor PNP.

II.3.1.2.2 Commutation à l’ouverture

La phase d’ouverture de l’IGBT est initiée par annulation de la tension entre les électrodes de grille et d’émetteur comme pour le MOSFET. La figure II-6 présente les courbes idéalisées pendant la phase d’ouverture de l’IGBT.

![Fig.II-6 Courbes idéalisées de phase d’ouverture](image)

La première étape de cette phase concerne le retard t_4, qui est dû au temps nécessaire au circuit de commande, pour réduire la valeur de la tension V_{GE}, de sa valeur maximale V_{GG+}, à la valeur à laquelle la tension collecteur-émetteur commence à croître.
Pendant la durée t_5, la tension collecteur-émetteur croît et, à cause de l’effet Miller, la tension V_{GE} reste constante et égale à $V_{plateau}$. La tension V_{CE} croît donc selon la loi :

$$\frac{dV_{CE}}{dt} = \frac{V_{plateau} - V_{GG}}{R_{C} C_{gc}}$$ \hspace{1cm} (Eq II.10)

C_{gc} : capacité grille-collecteur de l’IGBT.

Lorsque $V_{CE} = V_{BUS}$, la diode D_f entre en conduction, et le courant Ic décroît pendant la durée t_6. Ic évolue selon la loi définie par (5).

Lorsque $V_{GE} = V_{seuil}$, le MOS se bloque et la vitesse de décroissance de Ic diminue. Pendant la durée t_7, la tension V_{GE} continue à décroître avec la constante de temps τ_1 et le courant Ic décroît lentement jusqu’à s’annuler.

Cette traînée du courant est due à la recombinaison des porteurs minoritaires dans la région de conduction de la partie bipolaire. Elle va limiter la fréquence de fonctionnement de l’IGBT, et ses caractéristiques (durée, amplitude) dépendront des procédés de fabrication du composant.

II.3.1.3 Limites du composant – Aires de sécurité

L’aire de sécurité SOA (Safe Operating Area) est une représentation simplifiée qui permet de fixer les limites de la tenue en courant et en tension, avec une température de jonction ou de boîtier spécifiée Fig II-7. Elle est donnée dans le plan $Ic(V_{CE})$ pour les transistors de puissance. Les contours sont des limites maximales absolues pour lesquelles le point de fonctionnement peut se déplacer sans risque de destruction. Leur dépassement risque de générer un processus de destruction très rapide, ou au contraire, peut ne se manifester qu’après un temps assez long.

En général, on distingue trois limites distinctes pour l’aire de sécurité.

Pour de fortes tensions et de faibles courants, la tension maximale que peut supporter le composant est la tension de claquage par avalanche.

Pour de forts niveaux de courant et de faibles tensions de collecteur, le courant maximum que peut supporter l’IGBT est défini par le niveau auquel le thyristor parasite s’enclenche, provoquant ainsi le phénomène de latch-up.

La dernière concerne la zone de forte tension et de fort courant. Lorsque le point de fonctionnement se trouve dans cette région, le composant est soumis à une forte dissipation de puissance qui entraîne une élévation de température importante dans la structure. De là, les propriétés thermiques de l’assemblage définissent les limites de l’aire de sécurité.
II.3.2 Modélisation en électronique de puissance : état de l’art

De nos jours, les simulations en électronique de puissance sont utilisées pour une post-validation des circuits réalisés, à partir de structure optimisée de composant de puissance. D’où la nécessité de méthodes évoluées de conception fonctionnelle pour les circuits basées sur des modèles précis et simples pour effectuer de bonnes simulations.

La modélisation des convertisseurs, en particulier, représente un souci constant des électroniciens de puissance. Outre la description très complexe du comportement des éléments de commutation, les résultats issus des premiers simulateurs sont peu fiables. En effet, les composants de puissance soumis à de forts courants et de fortes tensions sont le siège de grandes variations de température, qui modifient les propriétés classiques du silicium et qui ne sont pas prises en compte. De plus, l’utilisation d’outils basés sur l’approximation des constantes localisées n’est plus justifiée du fait de la nature distribuée des phénomènes de transport des charges dans les composants semi-conducteur de puissance.

Conscient de cela, les nouveaux simulateurs deviennent de plus en plus performants, prenant en compte les divers problèmes liés aux composant de puissance. Cependant, il est nécessaire de bien connaître les possibilités de chaque outil, afin de pouvoir choisir celui qui convient le mieux à l’utilisateur en fonction de l’application.

Le but de cet état de l’art est de donner un bref aperçu sur les performances actuelles des simulateurs pour les composants à semi-conducteur de puissance, mais aussi, les problèmes posés par la modélisation de ces composants pour la simulation de circuits.

Ces dernières années, la recherche au niveau des modèles de dispositifs à semi-conducteur de puissance s’est intensifiée. Une étude bibliographique, en particulier sur la modélisation des IGBTs, montre que plusieurs modèles ont été développés, depuis ceux basés sur la notion de
Schéma équivalent jusqu’aux modèles de connaissance qui utilisent la résolution des équations des semi-conducteurs.

Une liste exhaustive des modèles d’IGBT à structure verticale, publiés depuis 1985, est présentée dans un ordre chronologique dans (Tab.1 annexe 1). Les auteurs ainsi que les dates de publication de chacun des modèles sont spécifiés. Les modèles sont classés selon la méthode de modélisation utilisée. Une indication sur le degré de complexité du modèle est donnée par l’affectation d’un nombre de 1 à 5 et qui croit avec le degré de complexité.

Bien que la majorité des modèles sont développés pour simuler le comportement du composant dans le circuit, d’autres modèles, notamment les modèles mathématiques sont développés pour mieux appréhender le mécanisme de fonctionnement du composant de puissance et optimiser sa structure.

II.3.2.1 Modèle mathématique

Cette catégorie correspond aux modèles analytiques basés sur la physique des semi-conducteurs. De la résolution des équations physiques avec les différentes simplifications se dégagent des expressions analytiques décrivant les porteurs et leurs comportements électriques. Ces expressions peuvent être implémentées dans différentes simulations afin d’émuler le comportement de l’IGBT dans diverses applications.

Plusieurs auteurs ont développé des modèles analytiques basés sur la physique des semi-conducteurs [HEFN 90]. Le premier modèle a été développé par Baliga, comme un transistor PNP commandé par un MOSFET, séparant les deux courants de base (électrons) et celui du collecteur (trous).

Dans [KUO 85] la configuration PNP-MOSFET a été validée quantitativement à l’état ouvert avec des composants discrets : MOSFET, transistor PNP et une charge résistive.

Toutefois, la combinaison des transistors discrets PNP et MOSFET est physiquement différente de l’IGBT. La décroissance du courant de trainage a été assimilée à une exponentielle et sa constante de temps a été exprimée analytiquement.

D’autres approches sont mises en œuvre et prennent en compte certains phénomènes physiques fondamentaux tel que la modélisation de la conductivité et la charge stockée dans la zone faiblement dopée, les capacités MOS notamment la capacité grille collecteur résultant de l’isolation de la grille par rapport à la région semi-conductrice.

Par ailleurs, Kuo et al. [KUO 85] proposent une expression analytique de la tension de conduction directe qui prend en compte la modulation de la conductivité de la base dans les IGBTs à structures PT et NPT. Ce modèle est démunie de la section du MOSFET, élément...
essentiel dans la simulation des transitoires et s’avère incomplet pour la modélisation du courant de traînage (et par conséquent la simulation des circuits).
Dans la plupart des cas, la modélisation des divers effets physiques précités est basée sur un calcul unidimensionnel. Hefner fut le premier à développer un modèle analytique unidimensionnel, à contrôle de charge, dédié à l’implémentation des simulateurs de circuit. Les capacités non linéaires entre les terminaux, qui affectent le comportement dynamique, ont été considérées.
Kraus et al. [KRAU 93] ont modélisé la concentration des porteurs minoritaires à la limite émetteur- base en utilisant la moyenne d’une distribution latérale sinusoïdale. La distribution de porteur dynamique a été approximée par un polynôme. Ce modèle ne peut être implémenté que dans des simulateurs de circuit complexe tels que Saber.
Un modèle mathématique complet a été mis en œuvre en [FATE 93], [FATE 96] utilisant les équations complexes pour chacune des parties du modèle (section de la base PNP, section du canal MOS, capacité, Latchup, l’effet JFET, comportement des porteurs dynamiques et l’effet électrothermique dynamique).
Par ailleurs, la méthode bond graph a été utilisée pour modéliser les composants semi-conducteurs de puissance incluant l’IGBT. En dépit des résultats précis délivrés, les modèles mathématiques imposent une plus grande exigence quant à leurs implémentations. D’après [UDRE 95] une amélioration est apportée au modèle en considérant la modulation de la conductivité de la base dérivant de la zone d’accumulation de charge sous la grille. Elle a été modélisée par une diode PiN dans le cas d’un trench IGBT (TIGBT).
Cependant, la majorité des composants à semi-conducteur de puissance ont des structures avec des effets bidimensionnels mais aussi tridimensionnels. Par conséquent, la modélisation unidimensionnelle est insuffisante pour décrire précisément leur comportement. Cette approche bidimensionnelle a été adoptée par Sheng et al. pour la modélisation de la conductivité de base dans le cas d’un DIGBT normal [SHEN 00] en résolvant des équations bidimensionnelles de distribution de porteurs. Ce modèle peut être utilisé dans la simulation des circuits ainsi que pour l’analyse du composant. Ces mêmes effets ont été modélisés dans l’IGBT latéral. La distribution bidimensionnelle des porteurs statiques a été exprimée sous forme de série par Feiler et al. [FEIL 95], [NAPO 97]. Il existe bien d’autres techniques mathématiques pour résoudre les équations différentielles de manière analytique. La transformation de Laplace est souvent utilisée en ce qui concerne les modèles de composants de puissance.
Dans [STRO 97] les transformées de Laplace des équations de transport de porteur sont implémentées directement dans des sous circuits électriques pour modéliser l’IGBT. En principe, ces méthodes peuvent conduire à des solutions exactes, cependant elles sont fortement dépendantes des conditions aux limites et une infinité de séries existe. Du fait que ces séries doivent être tronquées, afin d’obtenir des expressions simples et qui ne demandent pas des temps de calcul trop importants, les solutions sont donc des approximations. Dans la majorité des cas, il n’est pas évident d’obtenir des solutions analytiques exactes issues des équations du semi-conducteur qui sont utilisées comme équation de base. En outre le développement de tels modèles (mathématiques) nécessite de satisfaire simultanément des demandes antagonistes, comme une grande précision, une faible consommation en temps de calcul et des paramètres de modèles faciles à déterminer. Par conséquent d’autres solutions peuvent être employées notamment l’approche de modèles comportementaux.

II.3.2.2 Modèles semi-mathématiques

Les modèles semi-mathématiques sont en partie basés sur la physique des semi-conducteurs tout en combinant des modèles existants [MIHA 95]. C’est le cas pour la famille Spice par exemple ou Saber, pour d’autres composants. La plupart de ces modèles sont dédiés pour l’étude de certains aspects spécifiques tel que la modulation de la conductivité de base, les capacités non linéaires entre les terminaux, la dépendance de la durée de vie des porteurs et la vitesse de montée de la tension à l’ouverture du composant de puissance.

Dans [CHEN 91] un modèle Ebers-Moll modifié a été utilisé pour le transistor bipolaire BJT. Des capacités non linéaires sont modélisées de différentes manières : physique [SHEN 96] et polynomiale [KIM 93].

II.3.2.3 Modèles comportementaux

L’approche du modèle comportemental consiste à considérer le composant comme une boîte-noire et décrit son comportement externe observé, sans rendre compte des phénomènes physiques survenant à l’intérieur du composant. Les modèles standard des composants de faibles puissances, qui sont disponibles dans les simulateurs de circuits, sont adaptés pour les composants à semi-conducteur de puissance en optimisant leurs paramètres. Ces modèles sont fondés sur une description fonctionnelle pure dont les paramètres et les équations n’ont pas de sens physique. Cependant ces modèles sont
mal adaptés à la simulation des phénomènes se produisant pour de fortes puissances notamment pour la prise en compte des aspects thermiques.

L’utilisation des bases de données offre des possibilités de modélisation comportementale. Les relevés résultant directement de mesures ou de calculs sont stockés dans des tableaux de données et réutilisés pour la simulation. Cette technique est bien adaptée aux simulations en mode statique. Mais, il devient difficile de l’étendre aux modes transitoires. En effet, le comportement en mode transitoire des composants à semi-conducteurs peut dépendre d’un grand nombre de conditions, qui résultent de l’état du composant avant la commutation et des interactions du composant avec les autres éléments du circuit pendant la commutation. Il serait difficile de reproduire tous les scénarii qui sont liés à la topologie du circuit utilisé.

Dans [TZOU 93], les caractéristiques de sortie de l’ IGBT sont modélisées par une résistance et une source de courant. Les valeurs de résistance, la source de courant et les capacités non linéaires sont obtenues à partir d’une table (look up table).

Toutefois, pour une description des effets dynamiques, il est souvent nécessaire d’inclure des variables supplémentaires dans le système d’équation, par exemple des variables internes représentant la charge au sein du composant. Les relations entre ces variables internes et la forme des courant et des tensions externes, sont décrites par des fonctions mathématiques issues principalement d’hypothèses provenant de la physique des composants. Les différentes phases de commutation, tel que la décroissance du courant au blocage de l’ IGBT, sont décrites par différentes fonctions. Les solutions sont ajustées, afin de garantir une continuité sur les valeurs des grandeurs calculées.

Il s’ajoute à cette catégorie de modèles (comportementaux), la modélisation par des circuits électriques équivalents. Cette approche consiste à transcrire les équations physiques ou les caractéristiques statiques et dynamiques du composant actif par des éléments électriques. Ce type de modèle décrit le comportement quantitatif dans les différentes zones de fonctionnement du composant en commutation (formes d’ondes, temps de commutations, pertes, etc.). Ces modèles peuvent être utilisés pour la prévision du comportement des
composants et des circuits associés. Ainsi validés, ils peuvent résoudre plusieurs problèmes de conception se posant dans les systèmes de puissances.

A cet effet, Bonafé et al. ont élaboré un modèle équivalent d’IGBT basé sur la description de sa structure interne. L’IGBT est représenté par une combinaison de transistor MOS et bipolaire. Pour des raisons de portabilité vers d’autres environnements comme Spice, Saber, Succes, la description du modèle utilise des éléments linéaires (R, L, C, I, V) [BONA 95]. D’autres auteurs ont élaboré un modèle comportemental de l’IGBT à partir de la même description, utilisant l’environnement SIMUL. Ce modèle tient compte des charges stockées dans les capacités inter électrodes tel que la capacité grille collecteur [ELWA 98].

II.3.2.4 Modèles semi-numériques

Les résultats les plus précis sont obtenus par les méthodes numériques, qui sont basées sur la discrétisation de la région étudiée en un nombre fini de points constituant le maillage. Deux méthodes sont utilisées : la méthode des différences finies et celle des éléments finis. La combinaison de la méthode de discrétisation avec les modèles mathématiques constitue une classe semi numérique.

L’approche semi numérique a été utilisée dans [METZ 94] pour la modélisation du comportement d’un IGBT. Les équations de diffusion ambipolaire ont été résolues numériquement dans la base discrétisée, les autres parties du composant sont modélisées mathématiquement.

II.3.3 Modèle élaboré de l’IGBT

Le développement de convertisseurs de puissance de plus en plus performants et complexes entraîne inévitables le des contraintes d'une grande sévérité sur les composants actifs utilisés. La fiabilité de fonctionnement d'un convertisseur est essentiellement déterminée par son comportement en régime extrême qui apparaît comme un fonctionnement particulier devant être pris en compte dès la conception du convertisseur. D'où la nécessité de l’application d’une démarche structurée de sûreté de fonctionnement afin de mieux prendre en compte les aspects inter-systèmes en cas de panne [ARLA 99].

Dans ce contexte, l’élaboration d'un modèle précis de semi-conducteur qui tient compte des grandeurs limites relatives au courant, à la tension et à la température est à considérer. Les modèles de semi-conducteurs en électronique de puissance sont peu nombreux, en plus les limitations inhérentes à ces modèles, fait que leur comportement binaire dans les
simulations des systèmes d'électroniques de puissance rend impossible l'analyse des régimes défaillants [ERAN 91] [FOSS 88] [HEFN 88].

Une étape essentielle dans l'élaboration de ce travail est la conception d'un modèle fin de semi-conducteur faisant intervenir la variable température et permettant de modéliser les régimes extrêmes de fonctionnement.

Nous avons tenté dans un premier temps d’étendre et d’adapter le modèle de l’IGBT de la bibliothèque de Matlab. Il s'est avéré que la bibliothèque de Matlab n'est pas ouverte et qu'on ne peut pas étendre les modèles de Power_lib. Il devient impératif de développer notre propre modèle d'interrupteur en utilisant l’environnement Matlab.

II.3.3.1 Modèle d’IGBT par Stateflow et Matlab

Dans un premier temps, une méthodologie de modélisation a été abordée par deux approches : hybride et fonctionnelle. Cette méthodologie est déterminée par une analyse systémique, dans une structure globale et cohérente. Ce modèle est du type fonctionnel, structurel et comportemental, organisé en niveaux de formalisation descriptif, qualitatif et quantitatif. La modélisation descriptive est une représentation graphique des systèmes. L'élaboration du modèle a nécessité une connaissance approfondie du système, de son environnement afin de déterminer les conditions de synchronisation. En effet, notre système montre un comportement discret et continu. Comme première approche pour la modélisation et la simulation du fonctionnement de l'IGBT, nous avons adopté la technique de modélisation hybride (ou mixte) dédiée pour les systèmes discret-continus. Il s'agit d'une décomposition du système en une partie à temps-continu et une partie à événements discrets. Les séquences continues sont réalisées par des blocs analogiques et simulés par Simulink de Matlab. Les discontinuités sont provoquées par des actions discrètes, réalisée par l'outil Stateflow de Matlab. L’agencement de ses éléments est contraint par une syntaxe, celle des processus physiques. Chacun d’eux est une classe d’équivalence dotant le langage d’une sémantique. Notre objectif est de trouver une procédure de conception de modèle de composant de puissance, répondant au mieux aux exigences de la simulation, afin de contourner le problème de limitation du modèle d’IGBT de la bibliothèque de Matlab.

Notre contribution est divisée en deux parties :

- la première partie consiste à exposer notre approche pour l’élaboration du modèle de composant de puissance en se basant sur la méthode des graphes d’états.
la seconde partie consiste à étudier l'IGBT comme exemple d'application et à vérifier la validité du modèle proposé par la comparaison des résultats de simulation avec le modèle d'IGBT intégré dans le bloc Sim Power System de Matlab.

L'originalité de la démarche apparaît dans l'utilisation de la méthode de graphe d'états par le biais du module Stateflow de Matlab. Comme pour la méthode des graphes de liens, cette approche permet de représenter des phénomènes à plusieurs états, dans les dispositifs à semi-conducteurs [LAUT 98].

L'étude du composant de puissance en commutation est facilitée par l'utilisation de la décomposition fonctionnelle en plusieurs graphes d'état interprétant la causalité séquentielle de l'interrupteur. Cette méthode offre la possibilité de simuler cette structure numériquement à l'aide d'un modèle structuré.

Notre méthodologie consiste à séparer la partie commande (PC) ou commande interne de la partie opérative (PO) [DEGO 92] :

- **PC** est défini par les fonctions temporelles propres à la structure.
- **PO** est significative des fonctions spatiales (topologiques) de cette même structure.

Un formalisme d'analyse particulier est appliqué à chacun des blocs. Le temps intervient implicitement dans cette représentation fonctionnelle à travers l'évolution des grandeurs influentes tel que la commande interne et la commande externe :

- pour la partie opérative PO, les équations d'état régissent le fonctionnement dans chaque configuration imposée par la partie commande.
- pour la partie commande PC, le graphe d'état explicite à tout instant l'état des interrupteurs.

Le graphe fonctionnel relatif à la partie commande comporte cinq étapes. La phase de blocage se caractérise par deux étapes différentes : la descente et le traînage du courant.

- La première étape correspond à l'état bloqué, cet état est modélisé par un circuit ouvert.
- La seconde étape correspond à la mise en conduction qui est modélisée par une rampe de tension linéaire de pente $0.8V/m/\text{tr}$ (tr : le temps de montée du courant).
- La troisième étape correspond à l'état conducteur. Cet état est modélisé par une source de tension E_0 en série avec une résistance interne R_0, caractérisant respectivement le seuil de conduction et les pertes par effet Joule.
La quatrième étape correspond à la première phase d’extinction : la descente du courant. Cet état est modélisé par un générateur de courant linéaire de pente -0.8Im/t_{tail} (voir Annexe 6 liste des paramètres).

La cinquième étape correspond à la seconde phase d’extinction qui est caractérisée par un traînage du courant. Cet état est modélisé par un générateur de courant linéaire de pente -0.1Im/t_{tail}.

La partie opérative se caractérise par deux modules distincts :
- le premier correspond au multiplexeur qui permet de sélectionner le modèle fixé par le graphe de commande.
- le second comprend les fonctions relatives aux temps de commutations (t_r, t_f et t_{tail}) permettant le séquencement des modèles précédents.

A partir des caractéristiques (temps de commutation en fonction du courant Ic et temps de commutation en fonction de la température de jonction) fournies par le constructeur, les relations empiriques des temps de commutation en fonction du courant commuté et de la température de jonction sont établies par [DEGO 92] :

\[t_r = k_r I_{cm}^j \theta_{j}^{\frac{1}{2}} \]
\[t_f = k_f I_{cm}^j \theta_{j}^{\frac{1}{2}} \]
\[t_{tail} = k_{r0} I_{cm}^j \theta_{j}^{\frac{1}{2}} \]

La figure II-8 est une représentation dynamique de l’interrupteur physique.

Les états de k1 à k5 explicitent les mécanismes de changement d'état. L’état k1 correspond à l'état ouvert, lorsque la condition de fermeture est satisfaite, la transition est validée, dans ce cas :

\[V_{ce} > 0 \] et \[g > 0 \]
\[I_c < 0 \]
\[(k2=1) \]
\[V_{ce} = E_0 + R_0 I_c \]
\[(k3=1) \]
\[(k4=1) \]
\[(k5=1) \]
\[(CLOSED k1=1) \]

Fig. II-8 Equivalence fonctionnelle du composant physique
cas $k_1 = 1$. Pour le cas $k_2 = 1$, l'état k_2 décrit la phase de début de conduction. L'état k_3 définit par $k_3 = 1$, illustre la phase de conduction. L'état k_4 correspondant à la phase d'extinction est caractérisé par $k_4 = 1$. L'état k_5 présente la phase de traînage ($k_5 = 1$). L'état k_6 décrit la zone de plateau.

Cette approche a été utilisée en vue de développer un modèle de composant de puissance sous l'environnement Matlab 6.5 de Mathworks. Il s'agit du composant IGBT pris comme exemple d'application. Notre objectif est d'étudier le comportement du modèle, nommé sw_{-igbt}, dans les limites de son aire de sécurité.

Le modèle proposé est une combinaison d'un bloc Simulink et un diagramme Stateflow [STAT 94]. Ceci permet de transcrire les différentes topologies inhérentes aux divers changements d'états [SALA 01] [TERR 99]. La partie opérative est simulée avec Simulink Fig. II-9 et la partie commande est exécutée avec le module Stateflow Fig. II-10.

La génération des événements à partir de Simulink nous délivre l'activité des états. Le parcours des différents k_i fournit les différents scénarii.

![Fig.II-9 Schéma de simulation de sw_igbt avec Matlab](image)
Les simulations sont réalisées avec Matlab 6.5. Afin d'évaluer les performances du modèle proposé, les résultats de simulation sont confrontés au modèle IGBT de la boîte à outils Sim Power System (SPS) de Matlab dans des conditions de simulation analogues.

La comparaison de l'évolution du courant et de la tension des deux modèles est explicitée par l'erreur relative exprimée par l’expression :

\[
I_{C_err}\, (\%) = \frac{I_{C_SPS_IGBT} - I_{C_SW_IGBT}}{I_{C_SPS_IGBT}}
\]
(Eq II.14)

\[
V_{CE_err}\, (\%) = \frac{V_{CE_SPS_IGBT} - V_{CE_SW_IGBT}}{V_{CE_SPS_IGBT}}
\]
(Eq II.15)

Fonctionnement normal de sw_igbt :

Notre modèle a été évalué dans plusieurs applications test tel que le circuit hacheur montré par la Figure II-11, \(k1\) représente l'élément IGBT modélisé par \(sw_igbt\).
Chapitre II - Modélisation et simulation

La figure II-12 illustre le schéma de simulation du circuit hacheur comprenant le modèle sw_igbt.

Les simulations sont effectuées avec les mêmes paramètres tel que le pas de simulation, l'erreur tolérée et l'erreur absolue.

Les évolutions du courant et de la tension de charge obtenues par la simulation, sont montrées à la figure II-13 (tracé en noir). Les signaux du hacheur réalisés avec le modèle de la boîte à outils SPS (psb_igbt) sont en pointillé rouge.
La comparaison des résultats de simulation qui est donnée par la figure II-14 montre que l'erreur est négligeable ne dépassant pas 0.1%.

Par ailleurs, le temps d'exécution est comparable à celui du système utilisant le modèle de la boîte à outils (psb_igbt). De plus, notre système présente une structure ouverte qui permet de l'étendre au mode de fonctionnement non décrit des modèles non linéaires.

Le modèle sw_igbt a été également évalué dans le cadre d'une application d'onduleur [CHAR 02].
Fonctionnement en régime saturé :

Le modèle initial \(sw_{-}igbt\) est étendu pour couvrir le régime de saturation en ajoutant un état \(k6\) dans la partie commande. L’état \(k6\) est activé sur la condition \(Ic>Isat\) Fig.II-10. La désactivation s’effectue lorsque \(Ic<Isat\).

L’étude du fonctionnement en mode saturé a été effectuée, pour le modèle \(sw_{-}igbt\), dans l’application hacheur. La figure II-15 illustre l’influence de la saturation sur le courant et la tension dans la charge.

Conclusion partielle

Cette méthode est basée sur la décomposition fonctionnelle du composant physique, en une partie commande et une partie opérative, en utilisant la théorie des graphes d’état.

Les résultats de simulation, sur les configurations de base des circuits de puissance : hacheur et onduleur, montre la validité du modèle proposé en comparaison avec les modèles de la bibliothèque de Matlab.

Le modèle proposé est étendu pour tenir compte du phénomène de la saturation. Les simulations ont donné des résultats exploitables dans l’analyse des régimes dégradés [CHAR02_1].

La méthode proposée est extensible pour la modélisation des autres composants de l’électronique de puissance.
Cependant, la prise en compte, dans le cadre de la cellule de commutation, du caractère à la fois non linéaire, variant et réparti des phénomènes de natures diverses souvent couplés notamment les effets électriques et thermiques pour les semi-conducteurs s’avèrent assez complexe par cette approche.

II.3.3.2 Extension du modèle d’IGBT de Sim Power System

Une seconde approche consiste à étendre le modèle IGBT de la bibliothèque Power System Blockset de Matlab [PSB 94] (appelé aussi Sim Power System dans la nouvelle version de Matlab 6.5). Ce modèle est décrit par la figure II-16. La caractéristique statique est montrée sur la figure II-17.

Utilisant l'approche des systèmes continus, l’IGBT_SPS est basé sur les notations de schéma fonctionnel considéré comme étant formel. En effet, un modèle mathématique peut être associé aux différents blocs.

Notre objectif est d’étendre sa dynamique de fonctionnement pour couvrir le fonctionnement dans les zones de saturation et de claquage et de prendre en compte les effets d’échauffement dans le composant.

![Fig.II-16 Présentation du modèle de l’IGBT de SPS de Matlab](image-url)
Le modèle de IGBT_SPS fournit des résultats précis, en simulations électriques, dans les limites de l’aire de sécurité S.O.A. Néanmoins, en dehors de cette aire le modèle présente certaines limitations notamment la simulation du comportement électrique et thermique du composant IGBT.

Afin de contourner cette limitation, il est nécessaire d’apporter des améliorations à ce modèle. L’extension du modèle consiste en une modélisation structurelle basée sur le modèle SPS de Matlab comme primitive, utilisant une description par des sous-systèmes [BONA 95].

Le bloc IGBT_SPS implémente un composant semi-conducteur contrôlable par le signal de grille. L’ IGBT est simulé par une résistance Ron, une inductance Lon et une source continue.
de tension en série avec un interrupteur idéal contrôlé par un signal logique \((g>0\ ou\ g=0)\) (figure II-16). Le modèle est décrit par l’équation différentielle :

\[
V_{ce} = V_f + R_{on} I + L_{on} \frac{dI}{dt}
\]

(Eq II.16)

Le schéma électrique a été modifié en intégrant une résistance non linéaire en remplacement de la résistance fixe \(R_{on}\). Différentes valeurs de résistance sont considérées selon la zone de fonctionnement de l’IGBT. La résistance dynamique est fournie par l’inverse du gradient de la caractéristique \(I_c = f(V_{ce})\) à un point de fonctionnement donné. La valeur de \(Ron\) est dépendante de la température \(T\) qui sera évaluée dans la partie suivante.

La tension \(V_f\) est introduite dans le modèle comme tension de seuil pour la conduction. Cette tension est aussi liée à la variation de la température et de l’ordre de grandeur de la tension d’alimentation. Dans la zone de ‘plateau’ le courant est limité au courant de court circuit tandis que la tension \(V_f\) continue à croître. Le claquage survient lorsque \(V_f\) atteint la valeur limite \(V_{max}\). Le schéma de principe ainsi que le schéma bloc du modèle étendu de l’IGBT sont présentés respectivement sur les figures II-19 et II-20.

\[\text{Fig.II-19 Schéma de principe du modèle étendu de l’IGBT}\]
Les améliorations apportées aux fichiers *.mdl du modèle de l’IGBT_SPS consistent à :

- Modifier la résistance R_{0n} fixe, représentée par un bloc gain constant, par une résistance variable permettant de limiter le courant direct dans le composant. Pour cela, nous avons utilisé un premier bloc "look_up table" traduisant la diminution de la résistance du composant dans la zone ‘plateau’ par rapport à sa valeur dans la zone de conduction linéaire. Un second bloc "look_up table" est utilisé, exprimant la forte augmentation de la résistance pour le fonctionnement dans la zone de claquage (indiqué en rouge sur la figure II-21).

- Comparer la tension V_{ce} par rapport à V_m, la tension de claquage. Ceci est réalisé par l’ajout d’un comparateur, d’un bloc V_m dans le bloc de logique de conduction (indiqué en rouge sur la figure II-22).

Le courant intégré $I_{ce\text{, intégré}}$ est contrôlé par la variable ‘ etat ’ (la sortie 1) du bloc logique de conduction Fig.II-21.

Si $g>0$ et $V_{ce}>0$ la sortie [bool5] est activée à la valeur 1 favorisant la conduction.

Si $Ice>0$, la sortie du bloc saturation [I>0] est à activer à la valeur 1. Par conséquent, la sortie du sommateur se met à la valeur 2 dépassant ainsi la limite supérieure fixée à 1.5 (upper limite). Alors, la sortie du bloc saturation [I>1.5] est à 1.

Donc si $g>0$ et $(Ice>0$ ou $V_{ce}>0)$ alors ‘etat’ est à 1. Lorsque ‘état’ est activé, on assiste à une intégration du courant qui sera livré vers la sortie Ice via le bloc subsystem (bloc de trainage).
Néanmoins, quand ‘état’ passe de 1 à 0 le traînage est activé par une intégration au cours du temps, en utilisant le bloc look_up table de Simulink dans lequel on fait introduire les différents temps de descente t_f et de traînée t_t (Fig II.23).

Si $Vce < Vm$, la sortie "désaturation" contrôle la désaturation / claquage est désactivée (elle vaut zéro). On fait passer alors le courant intégré limité par le courant du ‘plateau’ ayant pour valeur I_{sat} (fig II.24).

Si $Vce > Vm$ et $g > 0$, la sortie "désaturation" est à l’état 1 et " etat" est à 1 on fait passer tout le courant pour simuler le claquage.

La Fig II-23 décrit le schéma de simulation de la commutation à l’ouverture et à la fermeture du modèle de l’IGBT. A la fermeture, le courant intégré est modulé par une fonction de transfert de premier ordre (équation. 16) traduisant la montée du courant. Quant à la phase de l’ouverture, le courant intégré est modulé par une table "look up table" décrivant la descente ainsi que le traînage du courant.
Chapitre II - Modélisation et simulation

Fig. II-21 Schéma de simulation du modèle de l'IGBT par Matlab
Fig. II-22 Schéma de simulation de la "logique de conduction" du modèle de l’IGBT par Matlab
Chapitre II - Modélisation et simulation

![Diagram of simulation model](image)

Fig II-23 Bloc de simulation de la commutation à la fermeture et l’ouverture du modèle de l’IGBT

La Fig.II-24 montre la caractéristique de transfert $I_c=f(V_{ce})$ du modèle étendu de l’IGBT avec les trois zones de fonctionnement linéaire, la saturation et le claquage.

![Charateristic curve](image)

Fig.II-24 Caractéristique de transfert $I_c=f(V_{ce})$ du modèle étendu de l’IGBT

Cette approche de modélisation permet une grande efficacité en terme de calcul ainsi qu’un libre accès, pour les utilisateurs, aux paramètres internes du modèle.

Cette approche permet l’investigation de la variation de la température de jonction et ses effets sur les résistances dynamiques et la tension de seuil de conduction.
Chapitre II- Modélisation et simulation

Les simulations ont été effectuées dans l’environnement Matlab/Simulink et la boîte à outils Sim Power System de Matlab. Cet environnement permet de modéliser le circuit électronique de puissance en implémentant directement son schéma de circuit à partir des propres blocs de la bibliothèque et des blocs développés par l’utilisateur.

Le modèle développé précédemment est utilisé dans des applications tests notamment le circuit de commutation de base. Les paramètres du composant, utilisé en simulation, sont ceux du composant IGBT SKM 75 GB 123, de Semikron.

La figure II-25 illustre les zones linéaires, du plateau et du claquage, sur la caractéristique de transfert obtenues, par simulation.

\[\text{Char}\text{Fig.II-25 Caractéristique de transfert par simulation}

II.3.3.3 Validation du modèle étendu d’ IGBT

Afin de valider le modèle de l’ IGBT étendu plusieurs simulations ont été effectuées sur différentes applications test, tel que le hacheur et l’onduleur. Les résultats de simulation sont comparés à ceux du modèle de l’ IGBT_SPS provenant de la bibliothèque SPS en utilisant les mêmes paramètres de simulation notamment pour le pas variable et l’erreur tolérée [CHAR 02_2].

II.3.3.3.1 Cas du hacheur

Un circuit hacheur direct de base, présenté en Figure II-26, est utilisé comme application test. Le signal de contrôle de la grille est obtenu par une modulation de fréquence et est appliqué à la grille isolée de l’ IGBT nommé k1. D1 désigne la diode de roue libre.
Mode normal

La figure II-27 montre l'évolution du courant et de la tension de charge obtenue, par simulation, des deux modèles de hacheur réalisés avec le SPS-IGBT et l'IGBT étendu en régime de fonctionnement normal. Le courant ainsi que la tension dans la charge avec le modèle étendu sont représentés en trait continu alors que celui du SPS-IGBT est dessiné en trait rouge discontinu.

La validité du modèle proposé est démontrée à partir des deux signaux courant (I_{ch}) et tension (V_{ch}) dans la charge R_L. En effet la montée de courant di/dt durant la commutation correspond à celle du SPS-IGBT.

Fig.II-27 Evolution du courant et de la tension de charge du hacheur en mode normal. (a) avec le modèle étendu en trait continu. (b) avec SPS-IGBT modèle en trait rouge discontinu
• **Mode saturé**

Le hacheur est alimenté avec une tension dépassant les limites tolérées afin de simuler le mode de saturation. Nous constatons que le courant ainsi que la tension dans la charge R,L sont affectés, quand l’IGBT opère en mode saturé Fig.II-28. Ce résultat pourrait être exploité dans l’analyse des modes dégradés.

![Graphique II-28](image)

Fig.II-28 Evolution de la tension et du courant de charge du hacheur en mode saturé. (a) avec le modèle étendu en trait continu. (b) avec SPS_IGBT en trait rouge discontinu

II.3.3.3.2 Cas de l’onduleur

Afin de valider notre modèle, un convertisseur direct DC/AC à deux bras d’IGBT alimentant une charge R,L est utilisé Fig.II-29.

• **Mode normal**

Les deux signaux de sortie courant et tension de charge dans l’onduleur, en régime de fonctionnement normal, sont montrés sur la figure II-30, comme des exemples de simulation. Ils illustrent les courants dans la charge R,L des deux convertisseurs utilisant SPS_IGBT et le modèle étendu de l’IGBT, qui sont présentés sur la partie haute de la figure, et les tensions en bas de la figure.
Chapitre II - Modélisation et simulation

Fig.II-29 Schéma électrique de l’onduleur à deux bras

Fig.II-30 Évolution du courant et de la tension dans la charge de l’onduleur en mode normal
(a) avec le modèle étendu en trait continu.
(b) avec le modèle SPS_IGBT en trait discontinu

- **Mode saturé**

Afin d’investiguer le comportement du présent modèle d’IGBT en mode saturé, l’onduleur à deux bras est alimenté à une tension dépassant les limites tolérées, ainsi, l’IGBT étendu est porté à la saturation.

Les résultats de simulation issue des deux modèles SPS_IGBT et le modèle étendu montrent que la saturation affecte les deux signaux courant et tension Fig.II-31, lorsque I_c atteint le plateau (I_{sat}).
II.3.4 Diode de puissance

La diode est l’élément considéré le plus simple des composants actifs, tant par sa structure, que par sa facilité de contrôle bénéficiant d’une commutation naturelle. Cependant elle reste le siège de mécanismes complexes qui posent la plupart des problèmes physiques et les problèmes de caractérisation. En particulier en électronique de puissance, la diode antiparallèle joue un rôle important dans les transferts énergétiques lors des commutations. Ces diodes sont principalement de type PIN. Celle-ci possède les meilleures performances en pouvoir de coupure et de rapidité. Par conséquent ce type reste le plus représentatif des diodes en électronique de puissance.

La structure PIN est réalisée par un empilement d’une couche P⁺ très dopée, une zone intrinsèque I (N⁻) peu dopée et une couche N⁺ très dopée Fig.II-32-a.

La région I sera donc soit P peu dopée et on aura une diode de type P⁺P⁺, soit N peu dopée et on aura une diode de type P⁺N⁺. La résistivité de cette zone est très élevée, on pourrait s’attendre à ce que cette résistance provoque une chute prohibitive de tension en directe. Or cette région travaille dans un régime de forte injection, elle reçoit des électrons de la région N⁺, des trous de la région P⁺, sa résistivité se trouve considérablement réduite. Toutefois, la chute de tension en direct est supérieure à la chute de tension d’une diode PN, elle est approximativement de l’ordre d’un volt.
II.3.4.1 Phénomène lié à l’ouverture et à la fermeture d’une diode de puissance

L’ouverture de la diode est le mode transitoire le plus perturbant des circuits en commutation où la perte maximale d’énergie risque de rendre le dispositif inopérant. En effet les courants crêtes du recouvrement inverse peuvent endommager complètement le circuit ou les interrupteurs commandables associés [MA 93].

Quand à la fermeture de celle-ci, elle est caractérisée par l’apparition d’une tension transitoire au début de l’amorçage. Ce phénomène peut rendre l’interrupteur, associé à la diode, passant dans le cas des diodes d’antisaturation, mais ce cas est très rare.

II.3.4.2 Commutation à l’ouverture

Courant de recouvrement inverse \(I_{RRM}\)

La diode de puissance de structure PIN, à l’état passant, voit la résistivité de sa zone centrale se moduler par une forte injection simultanée de charges mobiles positives et négatives. L’application d’une tension inverse aux bornes de celle-ci en conduction n’entraîne pas un blocage instantané de la diode [LIAN 90]. Une diode réelle ne se bloque que si le courant inverse passe par une valeur maximale \(I_{RRM}\) Fig. II-33. Ce phénomène est lié à la présence d’une quantité \(Q_s\) de charge emmagasinées dans la diode durant la conduction :

\[
Q_s = \tau I_F \quad (\tau : \text{durée de vie des porteurs minoritaires}, \quad I_F : \text{courant nominal appliqué})
\]

La disparition de ces charges stockées se réalise de deux manières : la recombinaison sur place et l’extraction par un courant inverse. Au cours de la commutation une partie de ces charges disparaît spontanément par recombinaison à l’intérieur de la jonction, l’autre partie

La Fig.II-32-b représente la distribution des charges en régime de conduction. Le creux central est lié à la recombinaison dans la zone I, l’hypothèse d’une distribution symétrique impose l’égalité entre les électrons \(n\) et les trous \(p\) quelque soit la distance \(x\).
appelée charge recouvrée Q_r doit être évacuée par le courant inverse. Q_r s’approche alors du courant de Q_s d’autant plus que la vitesse d’évolution dI_F/dt de $I_F(t)$ est plus grande en valeur absolue. La valeur de I_{IRM} est une fonction croissante de Q_r et de dI_F/dt est la vitesse de commutation du courant imposée par les inductances extérieures (inductances parasites).

Tension au blocage V_{RM}

La tension inverse passe par une composante maximale V_{RM} avant d’atteindre sa valeur nominale V_R. Fig.II-33. En effet, la diode impose la vitesse de remontée du courant inverse dI_R/dt, une surtension $\Delta V = L.dI_R/dt$ prend naissance dans les inductances parasites qui s’ajoutent à V_R ($V_{RM} = V_R + \Delta V$, où $\Delta V = L.dI_R/dt$).

II.3.4.3 Commutation à la fermeture

Tension apparente à l’amorçage de la diode

La fermeture d’une diode PIN de puissance ne présente pas de complexité comme dans le cas de son ouverture. La tension apparente n’est pas déterminante pour les applications en
électronique de puissance, toutefois elle peut causer l’amorçage non désiré d’un interrupteur en commutation.

Durant la fermeture, un phénomène transitoire se produit quand on applique à une diode, initialement bloquée, une rampe de courant de pente dI_F/dt constante. La tension directe au borne de la diode passe par une valeur transitoire V_{FP}, puis décroît vers la valeur de la tension de seuil V_f Fig.II-34.

![Fig.II-34 Evolution du régime transitoire à la fermeture d'une diode](image)

La valeur de V_{FP} peut atteindre plusieurs dizaines de volts pour des vitesses de commutation de $I_F(t)$ plus grande. Elle est essentiellement due au comportement résistif de la zone centrale de la jonction. Sa résistance est initialement élevée (à l’état bloqué : état quasiment neutre électriquement) puis diminue rapidement avec l’injection, par le courant direct, des porteurs minoritaires [SZE 81]. Pour de très grandes vitesses dI_F/dt, les propriétés inductives du cristal et des connexions participent aussi à la surtension de fermeture. Les porteurs minoritaires injectés dans la zone centrale, qui régissent la conduction, introduisent un aspect capacitif participant lui aussi à la surtension.

Pour évaluer les pertes d’énergie en commutation à la fermeture de la diode, on se place dans le cas le plus défavorable d’une montée rapide de courant Fig.II-35. Le temps de recouvrement t_{FR} (la durée qui s’écoule entre l’application de la tension ou du courant d’attaque et le passage de $V_D(t)$ à sa valeur de seuil (V_f). On simplifie l’évolution de $i_D(t)$ et de $v_D(t)$ entre les instants t_F et t_F+t_{FR} en admettant que ces grandeurs s’expriment :

$$i_D(t) = I_F$$ \hspace{1cm} (Eq II.17)

$$v_D(t) = V_{FP} - \frac{V_{FP} - V_F}{t_{FR}} (t - t_F)$$ \hspace{1cm} (Eq II.18)
Chapitre II - Modélisation et simulation

Fig.II-35 Evolutions simplifiées du courant et de la tension à la mise en conduction

L’énergie dissipée dans la diode au cours de la transition est :

\[W = \int_{t_f}^{t_f+T_{FR}} V_D i_D \, dt = \frac{1}{2} (V_{FP} + V_F) I_F \cdot T_{FR} \]

(Eq II.19)

Si la fermeture était idéale, l’énergie dissipée serait :

\[W_i = \int_{t_f}^{t_f+T_{FR}} V_F i_F \, dt = V_F \cdot I_F \cdot T_{FR} \]

(Eq II.20)

La perte d’énergie due à la commutation est exprimée par :

\[\Delta W = W - W_i = \frac{1}{2} (V_{FP} - V_F) I_F \cdot T_{FR} \]

(Eq II.21)

L’énergie maximale dissipée (\(\Delta W\)) est très faible comparativement à celle dissipée en conduction. C’est pourquoi le comportement à la fermeture d’une diode n’a pas d’effet préjudiciable sur le composant.

II.3.4.4 Formes d’ondes d’une diode de puissance

Ouverture de la diode

Le montage de base, dérivé du hacheur, pour l’étude des commutations est représenté par la figure II-36.
Les formes d’onde du courant et de la tension dans la diode sont représentées sur la Fig.II-33. A l’ouverture de la diode, il y a des charges au voisinage des frontières P_I et I_N. La tension aux bornes de la diode reste faible et le courant diminue entraînant la charge stockée à décroître par élimination directe. Puis le courant s’inverse, le mécanisme d’extraction devient important cette fois-ci, le courant de recouvrement évacue les charges Q_R ($= Q_{rr}$). A l’instant t_{RRM}, le courant de recouvrement passe par son maximum I_{RRM}, la pente $\frac{dI_f}{dt}$ du courant s’annule et la tension aux bornes de la diode est égale à V_R. Après la diode impose la vitesse de remontée $\frac{dI_R}{dt}$, une surtension $\Delta V = L_C \frac{dI_R}{dt}$ qui prend naissance dans l’inductance L_C s’ajoute à V_R. La diode est soumise alors à une tension inverse $V_{RM} = V_R + \Delta V$. Ce maximum aura lieu pour $\frac{dV_R}{dt} = 0$ (correspond encore à $\frac{d^2I_R}{dt^2} = 0$), la pente $\frac{dI_R}{dt}$ sera donc la racine de surtensions pouvant dépasser plusieurs fois V_R. Pour une allure symétrique du courant de recouvrement, $\frac{dI_R}{dt} = \frac{dI_f}{dt} = -\frac{V_R}{L_C}$ apparaît une tension $V_{RM} = 2V_R$.

L_C : représente ici la somme des inductances de fuite de câblage, de connexion, etc. qui sont non négligeable.

Le temps écoulé pour retrouver le pouvoir de blocage est trr (reverse recovery time), caractéristique essentielle de la rapidité.

Les relations empiriques (1) et (2) sont souvent utilisées pour déterminer trr et I_{RRM} :

$$t_{rr} = \sqrt{\frac{3Q_r}{dI_f/dt}} \quad \text{(Eq II.22)}$$
Selon l’allure de remontée du courant de recouvrement on distinguera deux types de diodes Fig.II.37, diode snap off (remontée brutale), diode soft (remontée progressive). Le recouvrement snap off est accompagné d’une surtension aiguë (cas des diodes de structure PnP), par contre le recouvrement soft se manifeste par une surtension faible (diode de structure PvP) [TAN 99].

\[
I_{RM} = \sqrt[3]{\frac{4}{3}} Q_m \left(\frac{dI_f}{dt}\right) \quad \text{(Eq II.23)}
\]

Fig.II-37 Comportement en recouvrement Soft et Snap off.

Fermeture de la diode

Les formes d’ondes correspondantes sont données par la Fig.II-34. La surtension aux bornes de la diode est d’autant plus marquée que la vitesse de commutation \(dI_F/dt\) du courant direct est élevée. Cela est dû essentiellement au fait que la résistance apparente de la région centrale (large et peu dopée) est initialement très élevée.

II.3.4.5 Modèles de diodes

Une étude bibliographique, sur la modélisation des diodes de puissance montre que plusieurs types de modèles ont été développés depuis ceux basés sur la notion de schéma électrique équivalent tel que le modèle de Spice jusqu’au modèles analytiques qui utilisent la résolution
des équations des semi-conducteurs en passant par des intermédiaires qui sont les macro modèles ou les modèles empiriques.

Les macro modèles empiriques reproduisent le comportement externe du composant sans considérer ni sa nature géométrique ni les processus physiques internes. Ce comportement est souvent modélisé par des équations empiriques approximées à partir des données, des tables ou des sous circuits des composants de base de la bibliothèque afin d’émuler les résultats expérimentaux. Ces modèles font des hypothèses simplificatrices ayant l’avantage de les rendre moins coûteux.

Un modèle empirique a été développé par Bertha [BERT 93]. Le modèle proposé est celui de la diode de puissance de Spice qui a été modifié afin de réduire le nombre de composante idéale dans le modèle.

On distingue aussi, les modèles analytiques et numériques qui sont plus précis et très reliés à la structure physique du composant.

Les modèles numériques utilisent un ensemble d’équations différentielles partielles dont la résolution est basée sur les éléments finis ou les méthodes de différences finis. Ces équations décrivent les phénomènes physiques au sein du semi-conducteur notamment les composantes de diffusion et de dérive des porteurs, la génération des porteurs, les effets de recombinaison et la relation entre les charges d’espace et le champ électrique.

Ces modèles numériques conviennent le mieux aux fabricants cherchant à évaluer les performances de leurs composants dans une application de puissance.

Le modèle élaboré par Goebel [GOEB 92] utilise les modèles physiques tel que les effets thermiques en statique et dynamique, la durée de vie des porteurs, la description du profil du dopage.

Les modèles analytiques reposent sur un ensemble de fonctions mathématiques décrivant les caractéristiques de sortie du composant, par exemple, le modèles standard de diode implémenté dans Spice [LIAN 90]. Comme pour les modèles numériques, la limitation des modèles mathématiques en terme de précision est due aux paramètres d’entrées et non pas au modèle lui-même.

Le modèle de la diode implémenté dans PACTE [MORE 94], qui est basé sur la méthode des graphes de liens, est un modèle électrique analytique basé sur les propriétés physiques des dispositifs semi-conducteurs qui reproduit fidèlement les commutations. Il prend en compte la durée de vie ambipolaire, pour présenter la forte injection, ainsi que d’autres paramètres technologiques notamment le dopage de la zone centrale. Ce modèle exploite le changement dynamique de modèles, reliés aux réseaux de Pétri et présente un temps faible de simulation.
En outre, il existe un large éventail de simulateurs commerciaux tel que Spice et Saber adaptés à ce type de modélisation [LIAN 90]. Le modèle de la diode Spice est souvent utilisé comme modèle de référence pour la validation d’autres modèles [MA 90].

Les différents modèles élaborés durant la dernière décennie sont résumés dans la table I en Annexe 2. Elle décrit le domaine d’application (le type de diode, les effets considérés : transitoire thermique,…, le simulateur utilisé et le nombre de paramètres). Nous constatons que le développement de modèle de diodes de puissance a commencé en 1991. A partir de 1993, tout l’intérêt est porté au modèle analytique, afin d’y intégrer les effets physiques dans les redresseurs de puissance. Cependant, après 1994, le nombre des travaux publiés sur le redressement en puissance a chuté à raison de un/an. Toutefois cette réduction en nombre de publication n’indique pas la maturité des modèles de diodes. En effet, plusieurs problèmes en rapport avec les dépassements des grandeurs électriques qui sont étroitement liés à l’échauffement du composant, et qui résulte en une déviation des caractéristiques du composant en mode de fonctionnement normal, ne sont pas pris en compte.

II.3.5 Modélisation comportementale de la diode

Dans cette partie, nous allons élaborer un modèle de type circuit de la diode de puissance. La démarche consiste à transcrire les phénomènes observés durant les phases de commutation au sein de la diode, décrits auparavant, en éléments électriques. Les paramètres de notre modèle sont ensuite déduits des notices du constructeur.

Ce modèle de la diode, issu de Sim Power System, implémente un modèle de diode à semi-conducteur de puissance qui est contrôlé par ses propres grandeurs physiques tension V_{ak} et courant I_{ak}. Quand la diode est polarisée en directe ($V_{ak}>0$), elle commence à conduire avec une faible tension directe V_F à ses bornes. Elle se bloque et son courant s’annule.

Lorsqu’elle est polarisée en inverse ($V_{ak}<0$), la diode reste à l’état bloqué.

La diode est simulée par une résistance, une inductance et une source de tension continue en série avec un interrupteur idéal [PSB 94]. Ce dernier est contrôlé par la tension V_{ak}, Fig.II-38.
Chapitre II- Modélisation et simulation

II.3.5.1 Description du modèle élaboré de la diode

De l’étude précédente, il en découle que le recouvrement inverse est un phénomène déterminant pour les applications en électronique de puissance mais qui n’est pas pris en compte par le modèle de diode issu de la bibliothèque SPS Fig. II-40-a.

Le modèle de diode de SPS a été repris pour étendre le comportement de la diode à la phase d’ouverture. La figure II-40-b montre le modèle modifié de la diode_SPS. Il est décomposé de façon modulaire sur la figure II-41.
Pour la mise en œuvre de cette extension du modèle, on procède à une linéarisation par morceaux. En effet, le modèle élaboré est composé de deux sources de courant en parallèle. La condition de commutation entre ces deux modèles de sources de courant est validée lorsque le courant dans la diode i_D atteint la valeur $-I_{rm}$.

Le comportement de la diode, lors d’un cycle de fonctionnement, est modélisé par deux phases :

Une première phase correspond à la conduction et le stockage qui se traduit par :

\[
\begin{cases}
I_{ak} > \varepsilon & \text{OU} \\
V_{ak} > V_f & \text{ET} \quad -I_{rm}/100 < I_{ak} < I_{rm}/100 ;
\end{cases}
\]
Alors la sortie ‘stat’ du bloc logique de conduction est activé, (‘stat’=1). L’utilisation du bloc comparateur en fourchette ou à hystérésis $-I_{rm}/100 < I_{ak} < I_{rm}/100$ permet de détecter le passage par zéro pour qu’il n’y ait pas de commutations oscillatoires (« chattering»).

Pour $-I_{rm} < I_{ak} < -I_{rm}/100$, ‘stat’ est maintenu à 1 grâce à la bascule RS. Il s’agit d’un état de mémorisation. En effet, Set1=reset=0.

La seconde phase est accomplie lorsque le courant I_{ak} atteind $-I_{rm}$, nous commutons alors sur le second modèle décrit par une deuxième source de courant ‘stat1’ prend la valeur 1 lorsque ‘stat’ qui est son complément, passe à zéro. Au passage de ‘stat’ de l’état 1 à 0 (échelon), le courant intégré sera modulé par la réponse d’une fonction de transfert du premier ordre à l’échelon, Equation.1, traduisant la phase de déstockage caractérisée par une remontée du courant à la valeur 0.

$$f(s) = \frac{1}{(trr-ts)s + 1} \quad \text{(Eq II.24)}$$

avec :

ts: le temps de stockage ;

trr: le temps de stockage + temps de déstockage.

Les améliorations apportées modèle de la diode _SPS, pour la partie continue ainsi que le bloc logique de conduction, sont montrées respectivement sur les figures II-42, II-43.
Fig. II-42 Schéma de simulation du modèle de la diode
Fig.II-43 Schéma de simulation du bloc logique de conduction du modèle de la diode
Il.3.5.2 Résultat de simulation

La figure II-44 montre l’allure du courant dans la diode. Durant la conduction la charge stockée est stabilisée. Au moment de l’ouverture, la diode exhibe un courant de recouvrement inverse. Ce courant est maintenu tant que la valeur $-I_{rm}$ n’est pas atteinte. Au delà de cette limite la diode commence à construire une barrière de potentielle. Ainsi le courant dans la diode tend vers la valeur zéro.

Fig. II-44 Courant et tension de recouvrement inverse du modèle étendue de la diode

Une autre issue de la fiabilité à considérer dans le cas des composants de puissance est la modélisation thermique. Elle permet d’estimer par la simulation les risques de défaillance d’un composant, soumis à des conditions sévères de fonctionnement, et la sûreté de fonctionnement du système de puissance complet.

Il.3.6 Modélisation thermique

Dans de nombreuses applications (automobile, spatiales…) la dissipation de puissance à l’état passant est prédominante [DORK 96]. La fiabilité des convertisseurs de puissance embarqués nécessite que la température de fonctionnement des dispositifs à semi-conducteur soit contrôlée pendant le fonctionnement du convertisseur. Ainsi l’évaluation de la température du dispositif est liée à l’évaluation des pertes du dispositif. Celle-ci s’obtient par le produit de la chute de tension avec le courant.
Le comportement électrique des composants électroniques, et en particulier des composants de puissance, est fortement influencé par les phénomènes thermiques mis en jeu. La connaissance de ces phénomènes peut se révéler vitale pour le composant.

En particulier dans l’IGBT, l’auto-échauffement de la jonction sous courant important joue un rôle capital dans l’apparition du phénomène d’avalanche.

II.3.6.1 Influence de la température : état de l’art

II.3.6.1.1 Effet de la température constante

L’IGBT, comme tout composant semi-conducteur de puissance est sensible aux effets de la température. Ainsi toute variation de la température affecte les propriétés physiques du silicium. La plupart des paramètres physiques des semi-conducteurs sont dépendants de la température ce qui en complique la modélisation [HEFN 94].

Cependant dans le cas de l’IGBT, seuls quelques paramètres dépendant de la température sont à considérer. En fait, la température a un impact direct sur la bande interdite E_g, sur la concentration intrinsèque n_i, les constantes de diffusion D_n et D_p ainsi que la mobilité μ_n et μ_p respectivement des électrons et des trous.

La modélisation thermique a suscité un grand nombre de travaux. Les effets de la température sont considérés dans les modèles développés par [CLEM 93] [METZ 94] en maintenant la température de jonction du composant à un certain niveau lors de la simulation.

Des modèles dépendants de la température sont utilisés pour tester la fiabilité à des températures élevées. Il a été montré en [CLEM 93_1] et [SHEN 00_1] que la variation de la température de jonction au cours d’un cycle de commutation normal est inférieure à 2 Kelvins.

Influence sur les caractéristiques statiques $I_c(V_{ce})$

Une des caractéristiques importantes des IGBT est son bon fonctionnement en conduction directe, lorsqu’il est soumis à des températures élevées. Il doit présenter une bonne tenue aux surcharges. Cette caractéristique qui est une mesure de la robustesse du composant est très importante dans les convertisseurs puisqu’elle détermine la durée de tenue de la surcharge du court circuit avant la destruction d’un ou de plusieurs composant du système de puissance.

Cependant, une différence significative de la dépendance de température entre les IGBT NPT et PT est constatée. Dans le cas de l’IGBT NPT, nous remarquons que le composant présente un coefficient de température positif à la fois pour les faibles et pour les forts niveaux de courant Fig.II-45.
Ainsi quelque soit le niveau de courant, la chute de tension à l’état passant augmente toujours. Ce phénomène peut s’expliquer par le fait que, la valeur de la durée de vie des porteurs de l’IGBT NPT étant déjà très élevée, une augmentation de la température influe peu sur cette durée de vie, mais beaucoup plus sur la mobilité des porteurs qui se dégrade. Par conséquent, la valeur de la chute de tension à l’état passant augmente.

![Graphique de l'effet de la température sur les caractéristiques Ic(Vce) en mode de conduction directe dans le cas d’IGBT NPT](image1)

Fig.II-45 Effet de la température sur les caractéristiques Ic(Vce) en mode de conduction directe dans le cas d’IGBT NPT

Cette catégorie de composant présente donc un certain inconvénient pour des applications à haute température. Du fait de l’augmentation de la chute de tension à l’état passant, les pertes en conduction vont croître.

A l’opposé de l’IGBT NPT, l’IGBT PT présente un coefficient de température qui dépend fortement du niveau de courant, comme le montre la Fig.II-46.

![Graphique de l'effet de la température sur les caractéristiques Ic(Vce) en mode de conduction directe dans le cas de l’IGBT PT](image2)

Fig.II-46 Effet de la température sur les caractéristiques Ic(Vce) en mode de conduction directe dans le cas de l’IGBT PT

En effet, pour les faibles niveaux de courant, le coefficient de température est négatif, ce qui a pour conséquence de réduire la valeur de la chute de tension à l’état passant lorsque la
température augmente. Ainsi, les pertes en conduction sont réduites. Ceci s’explique par le fait que la valeur de la durée de vie des porteurs de l’IGBT est faible et très sensible à la température. Lorsque la température croit, la durée de vie augmente aussi, ce qui a un impact plus important sur le fonctionnement du composant que sur la dégradation de la mobilité des porteurs.

Pour un certain niveau de courant, nous constatons que les courbes se croisent. À ce niveau précis, le coefficient de la température est nul. Puis, il devient positif, et on retrouve alors le même cas que pour le transistor NPT.

Ce type de résultat, illustré par la Fig.II-47, avait été observé sur les premiers IGBT [BALI 85]. Nous voyons aussi que suivant le niveau de courant le coefficient de température est soit négatif soit positif. Notons aussi que pour un courant de 7A (cas particulier de ce composant), le composant étudié est quasiment insensible à la température.

![Fig.II-47 Effet de la température sur la chute de tension à l'état passant pour différentes valeurs du courant collecteur](image)

Influence sur la tension de seuil

L’IGBT, du côté grille, se comporte comme un transistor MOSFET et présente des caractéristiques de transfert assez semblables. La Fig.II-48 illustrant la variation de la tension de seuil avec la température, pour une tension collecteur-émetteur voisine de 5V, montre que cette valeur diminue lorsque la température croit.
Cette dépendance de la température est expliquée par Sze [SZE 81] Baliga [BALI 95]. Ils montrent que la tension de seuil est exprimée en fonction des charges fixes d’oxyde.

II.3.6.1.2 Effet électrothermique dynamique

Dans les applications de puissance mettant en jeu des composants de puissance, afin d’optimiser le rendement et la durée de vie des équipements, il est essentiel que l’énergie dissipée dans le composant soit la plus faible possible.

Ainsi pour réduire les pertes en commutation et augmenter les fréquences de fonctionnement, les concepteurs ont fait appel à des méthodes de commutation douce [KAZI 95], commutation à zéro de tension ou zéro voltage switching (ZVS) [TRIV 96], et commutation à zéro de courant ou zero current switching (ZCS) [LEFE 94].

Néanmoins dans de grand nombre d’applications, les IGBT sont encore utilisés en "commutation dure". De plus, les circuits de "commutation dure" sont intéressants pour caractériser et optimiser l’IGBT. En effet ils permettent de soumettre le transistor à des contraintes importantes (fort courant, forte tension), et il est ainsi possible d’évaluer les performances du composant et de définir son aire de sécurité.

L’analyse du comportement thermique en commutation montre que les IGBT PT et NPT sont très peu sensible à la température lors de la phase de fermeture. Les formes d’ondes du courant et de tension, en commutation forcée, à la fermeture sont montrées sur la Fig.II-49, illustrant l’influence de la température pour un pas de 50°C sur un IGBT PT.

Nous constatons que la température n’influence que très peu les caractéristiques électriques pendant la phase de fermeture. Du fait que la durée de la commutation du transistor MOSFET est quasiment indépendante de la température, celle de l’IGBT l’est aussi. Par conséquent, le
Chapitre II- Modélisation et simulation

taux de croissance du courant collecteur et le taux de décroissance de la tension collecteur-émetteur ne sont pratiquement pas affectés.

![Graphique 1](image1.png)

Fig.II-49 Effet de la température sur les grandeurs électriques pendant la phase de fermeture

Toutefois les deux structures présentent des comportements très différents lors de la phase d'ouverture. Tandis que la structure PT est fortement perturbée par l'élévation de la température, la structure NPT ne l'est pratiquement pas. La traînée en courant augmente considérablement avec la température dans la structure PT.

Les Fig.II-50 (a) et (b) mettent en évidence la dépendance à la température du courant et de la tension pendant la phase d'ouverture. Durant cette phase, l'augmentation du gain en courant du transistor bipolaire et de la durée de vie des porteurs minoritaires sont responsables de l'accroissement de la traînée en courant et du retard généré à la commutation.

De ce fait, la charge stockée dans la région de conduction est plus grande et les porteurs mettent plus de temps à se recombiner. Le retard à la commutation augmente sensiblement avec la température de 0,2 μs pour 25°C à 0,6 μs pour 125°C. Par conséquent, le temps de montée de la tension collecteur-émetteur augmente avec la température.
Nous constatons que la température augmente considérablement les pertes, et que ces dernières sont beaucoup plus importantes que celles générées lors de la phase de fermeture. Ellasser et al. [ELAS 96] remarque que les pertes à 125°C sont deux fois plus importantes qu’à 25°C.

Fig.II-50 Effet de la température sur les grandeurs électriques pendant la phase d’ouverture

L’évolution du temps de descente du courant du collecteur avec l’augmentation de la température est quasi linéaire. Ce qui permet de voir une fois de plus que l’IGBT peut être considérablement pénalisé par la croissance de la température de jonction.
Finalement, IGBT PT n’est pas aussi stable que le NPT. Les pertes à l’ouverture augmentent significativement à haute température, tandis que celles du NPT restent inchangées. Ainsi l’emballement thermique survient à faible température de jonction pour les IGBT PT.
II.3.6.1.3 Court circuit

En Court-circuit (C.C.), l’IGBT opère dans la zone de saturation Fig.II-24. Le courant de C.C. est limité, par la caractéristique de saturation du canal MOS, à la valeur du courant de saturation de l’IGBT.

La température de jonction de l’IGBT augmente rapidement à cause de la perte de puissance massive générée. La réduction de la mobilité des porteurs dans le canal à haute température engendre une décroissance du courant de saturation de l’IGBT. A mesure que la durée de court circuit augmente la température de jonction de l’IGBT augmente et la défaillance de l’IGBT survient éventuellement. La tenue au court-circuit de l’IGBT est une caractéristique importante.

Le phénomène le plus intéressant est la décroissance du courant de C.C après quelques microsecondes (2 μs). Toutefois, plus le courant de saturation est faible plus le courant de court circuit engendre un pouvoir de tenue au court circuit de l’IGBT important.

Dans la littérature, plusieurs modèles d’IGBT prennent en compte le phénomène de court circuit. Cependant les analyses sur les mécanismes de défaillance de l’IGBT dans les conditions de court circuit restent insuffisantes [HAGI 96] [SABE 96]. Le latch-up du thyristor parasite est l’une des causes, bien que le mécanisme exact de défaillance n’ait pas été élucidé. En effet lorsque la température augmente, la tension de jonction N⁺ (émetteur) et le puit P décroît (elle disparaît à 650 kelvin) et le composant est prédisposé au latch up.

II.3.6.2 Pertes dans le composant

Bien que les transistors de puissance fonctionnent la plupart du temps en commutation, leur fonctionnement en mode statique ne doit pas être négligé. Cela permet de mieux appréhender le comportement du transistor.

II.3.6.2.1 Perte à l’état passant

A l’état passant de basse impédance, la chute de tension à leur borne n’est pas nulle alors que la densité de courant dans le dispositif est importante. Cette énergie dissipée engendre une élévation de température au sein de la structure, qui perturbe le comportement du transistor. Ainsi, le silicium, matériau de base de l’IGBT, voit ses caractéristiques physiques fortement modifiées par l’élévation de la température [AZZO 98].
Chapitre II - Modélisation et simulation

II.3.6.2.2 Perte à l’état bloqué

L’état bloqué est caractérisé pour tous les composants semi-conducteurs par un courant de fuite I_R qui augmente progressivement avec la tension V_R appliquée à la jonction bloquante. Le courant de fuite est généralement négligeable à la température ambiante (27°C soit 300°K). De même, la densité de puissance à l’état bloqué définie par le produit V_RI_R reste négligeable par rapport à la densité de puissance en commutation. Toutefois cette puissance V_RI_R dissipée par le composant en régime bloqué peut augmenter sous l’effet d’un accroissement de la température de la jonction bloquante et conduire à l’emballlement thermique. Cette contrainte incite les fabricants à choisir une température maximale comprise entre 125°C et 175°C dans le souci de limiter le courant de fuite en régime bloqué.

II.3.6.2.3 Pertes en commutation

Le passage répété d’un état passant à l’état bloqué ou vice versa n’est pas instantané et s’accompagne de régime transitoire sur le courant établi et sur les tensions extérieures qui lui sont appliquées. Ces régimes transitoires du courant et de la tension sont fonction de la dynamique des charges internes aux composants et sont, de ce fait, affectés par la température interne du composant. Une augmentation de la température interne du composant tend à accroître sa charge interne et à ralentir la dynamique de ces commutations. Ceci se traduit par une augmentation sensible de puissance électrique dissipée pendant les commutations. Cette puissance dissipée vient s’ajouter aux autres pertes déjà inventorées. Elle est d’autant plus grande que la tension V et le courant I commutés sont élevés et les temps de commutation à la fermeture et à l’ouverture sont plus long. Pour les IGBT, c’est le courant de queue (ou de traîne) qui engendre la part la plus importante des pertes de commutation.

II.3.6.2.4 Evaluation de la puissance dissipée par le composant

Avec le développement des circuits intégrés de puissance, l’utilisateur est confronté à des situations complexes pour inventorier la puissance dissipée par le composant. L’estimation des pertes de puissance dans le composant s’avère l’un des paramètres pertinents au fonctionnement fiable du composant semi-conducteur.

En outre, les limites de sécurité en commutation sont souvent différentes de celles qu’on peut prévoir, à partir de considérations thermiques simples reposant sur les notions de résistances thermiques et de température maximale de jonction. Par exemple, les IGBT peuvent être
détruits par un transitoire répétitif de courant ou de tension, alors que la température du silicium reste dans les limites autorisées.

La modélisation à l’aide d’un simulateur de circuit permet d’accéder aux formes d’onde de la tension $v(t)$ appliquée aux composants et du courant $i(t)$ qui le traverse. L’utilisateur aura la possibilité d’accéder soit à la puissance instantanée $p(t) = v(t).i(t)$ soit à la puissance moyenne dissipée par le composant pendant un cycle complet de fonctionnement. La puissance instantanée permet d’analyser les variations précises que subit la température de jonction lors d’un cycle de commutation.

II.3.6.2.5 Environnement thermique du composant de puissance

Pour la plupart des applications, le composant de puissance est encapsulé dans un boîtier. Ce dernier confère au composant une rigidité mécanique pour son montage dans un environnement plus étendu. Il permet d’assurer les connexions de la puce avec l’environnement extérieur, une protection de la puce vis à vis des agents corrosifs et autres, un transfert de chaleur entre la puce et le radiateur Fig.II-51. Ce boîtier est ensuite monté sur un radiateur qui est d’une grande utilité vis-à-vis des problèmes thermiques. En effet, il permet d’évacuer la chaleur dissipée par la puce.

![Fig.II-51 Assemblage puce radiateur](image)

II.3.6.2.6 Mécanismes de transfert de chaleur

Nous distinguons, essentiellement, trois mécanismes de transfert de chaleur dans le composant, par diffusion (ou conduction), par convection ou par rayonnement.

La diffusion correspond au mécanisme de transfert direct de la chaleur. Elle est régie par l’équation suivante (Fourier) :

$$ \phi = -\lambda \nabla T $$

(Eq II.25)
avec ϕ (w.m$^{-2}$) densité de flux de chaleur,
λ (w.m$^{-1}$K$^{-1}$) conductivité thermique du milieu,
∇T (K$^{-1}$m$^{-1}$) gradient de température.

Ce mécanisme trouve son importance dans les corps solides caractérisés par une conductivité thermique élevée ($10 \leq \lambda \leq 400$ w.m$^{-1}$K$^{-1}$).

L’équation de diffusion de la chaleur en régime non stationnaire dans les milieux solide s’écrit :

$$\nabla (\lambda \nabla T) + p_v = \rho C_p \frac{\partial T}{\partial t}$$ \hspace{1cm} (Eq II.26)

avec p_v (w.m$^{-3}$) densité volumique de la puissance qui est dissipée localement sous forme de chaleur,
ρ (kg.m$^{-3}$) masse volumique du matériau,
C_p (J.kg$^{-1}$K$^{-1}$) capacité thermique massique du matériau,
t temps.

La convection intervient dans les échanges de chaleur entre une surface chaude et un milieu fluide tel que les liquides ou les gaz. La convection est régie de manière empirique par l’équation :

$$\phi = h\Delta T$$ \hspace{1cm} (Eq II.27)

avec ϕ (w.m$^{-2}$) densité de flux de chaleur,
h (w.m$^{-2}$K$^{-1}$) coefficient de convection thermique,
ΔT (K) écart de température entre la surface chaude et la fluide.

Enfin, une portion de la chaleur est transférée par rayonnement d’ondes électromagnétiques. À une température T uniforme du boîtier, la densité du flux de la chaleur rayonnée vers un milieu infini totalement enveloppant à la température T_0 s’écrit :

$$\phi = \sigma \left[\varepsilon(T)T^4 - \varepsilon(T_0)T_0^4 \right]$$ \hspace{1cm} (Eq II.28)

avec σ constante de Boltzmann
$\varepsilon(T)$ et $\varepsilon(T_0)$ émissivité hémisphérique d’un élément de surface du radiateur aux températures T et T_0 respectivement.

Nous constatons que les lois de conduction électrique et thermique ont une même structure portant sur des grandeurs différentes, ceci permet d’établir une analogie formelle entre les grandeurs thermiques et les grandeurs électriques.
Par ailleurs, durant le transfert de chaleur dans un ensemble puce-boîtier radiateur, la chaleur est principalement dissipée dans la zone active localisée dans le silicium. La température atteinte dans cette zone est la température de jonction.

La chaleur dissipée diffuse à travers les matériaux solides jusqu’à des surfaces d’échange. Elle s’évacue alors par convection (naturelle ou forcée) et par rayonnement. Afin d’assurer le meilleur transfert de chaleur possible, il faut prévoir dès la conception un bon système de refroidissement pour le composant utilisant un support (substrat et boîtier) métallique approprié (cuivre ou aluminium) et ayant une forte conductivité thermique. En effet la chaleur évacuée par convection et par radiation, à partir des surfaces libres de l’assemblage (composant), est généralement négligeable par rapport à la chaleur totale dissipée dans les zones actives.

En conséquence, le choix du radiateur et son dimensionnement déterminent directement la qualité de refroidissement de ces composants en vue d’un fonctionnement fiable.

II.3.6.3 Evaluation de la température de jonction

Dans le composant de puissance, la température n’est pas uniforme et l’écoulement de la chaleur est réellement un processus tridimensionnel. En effet, les équations qui gouvernent le transfert (diffusion, convection) sont dépendantes du gradient de la température.

Le calcul de la répartition de la température dans la zone active s’avère extrêmement complexe car la dissipation de chaleur est elle-même en interaction avec la température. Cependant, on peut approximer la température de jonction comme étant la température moyenne de la zone active.

II.3.6.3.1 Résistance thermique

Basée sur l’analogie formelle entre la conduction thermique et électrique, la notion de résistance thermique est souvent utilisée pour le calcul de l’échauffement du composant qui résulte de sa dissipation de puissance. Pour les composants semi-conducteurs, la résistance thermique jonction boîtier R_{thjc} est définie par le rapport :

$$ R_{thjc} = \frac{\Delta T_{jc}}{P} \quad (\text{Eq II.5}) $$

avec R_{thjc} (K.w$^{-1}$) résistance thermique entre la zone active et le boîtier,
P(w) puissance dissipée sous forme de chaleur.
La résistance thermique est fournie par les fabricants de composant de manière expérimentale par la mesure des paramètres thermosensibles comme par exemple la chute de tension aux bornes d’une jonction traversée par un faible courant de mesure ou la détermination de la tension de seuil dans le cas des IGBTs.

La notion de résistance thermique est commode pour une évaluation de la température de jonction dans le cas de composant de puissance discret en fonction de sa dissipation moyenne de puissance dans un régime établi de fonctionnement [MAXI 98]. Ce concept devient défaillant dans le cas d’un composant de puissance intégré là où plusieurs zones actives peuvent coexister. Il paraît aussi insuffisant pour apprécier les fluctuations de température qui résultent d’une dissipation de puissance dont la valeur instantanée fluctue même si la valeur moyenne de cette puissance dissipée reste constante dans le temps. Cependant dans de nombreux cas, l’utilisateur doit pouvoir apprécier les excursions limites de la température de jonction du composant de puissance.

La solution consiste à résoudre l’équation de chaleur en régime transitoire introduite en (Eq. II-26) moyennant quelques hypothèses simplificatrices qui concernent notamment la linéarité d’écoulement de la chaleur et l’unidimensionnalité.

II.3.6.3.2 Modèle thermique pour le transfert de chaleur

La prise en compte de la dynamique de température transitoire (auto-échauffement) est importante pour la simulation du comportement thermique du système complet lors de la phase de démarrage et en régime permanent, du comportement en court circuit, de la stabilité en haute fréquence et en haute température [HEFN 94]. Pour modéliser les effets électrothermiques dynamiques un sous-circuit thermique est modélisé simultanément avec le circuit électrique incluant le modèle dépendant de la température. L’interaction entre les deux circuits est prise en compte par le calcul de la température de jonction du composant à partir du circuit thermique et de la puissance dissipée.

La simulation du comportement électrique du composant en court-circuit représente une importante application des modèles électrothermiques de l’IGBT. La température de jonction transitoire du composant joue un rôle critique [HEFN 93].

Dans le cas le plus classique de calcul de la réponse thermique, on considère le composant monté sur un radiateur comme des éléments associés monté en cascade.

En effet, la discrétisation de l’équation de la chaleur en régime transitoire, par la méthode de la différence finie en domaine unidimensionnel, conduit à représenter le milieu par un ensemble de cellules RC en cascade (T-modèle) [DORK 95] [DEWA 92]. Cette
représentation prend en compte la nature distribuée du transfert thermique par conduction dans les différents éléments associés.

Il existe un autre modèle thermique; le Pi-modèle, composé d’une série de cellules RC de type Pi, Fig.II-52. Ce modèle présente l’avantage de faciliter l’extraction des paramètres à partir des mesures des courbes de refroidissement du composant de puissance.

Toutefois, le premier modèle thermique de type T, souvent utilisé par les simulateurs numériques tel que PSPICE ou SABER, présente l’avantage de faciliter l’adaptation à différentes technologies de radiateur. Mais, la paramétrisation de ce modèle doit être réalisée par approximation des courbes ou des connaissances détaillées concernant les couches matérielles du composant et leurs séquencements.

II.3.6.3.3 Choix du modèle thermique

Notre contribution a porté, dans un premier temps, sur la mise en œuvre d’un modèle de cellule de commutation qui tient compte des non linéarités des semi-conducteurs et le temps mort entre les commandes des interrupteurs du même bras par une extension du modèle
d’IGBT_SPS. Dans ce travail, notre objectif ne vise qu’à modéliser le couplage des phénomènes électrothermiques dans le composant de puissance.

Un modèle thermique de simulation est appliqué à l’étude du comportement électrothermique de l’IGBT dans le système de puissance non pas dans un but de validation mais dans un but d’analyse notamment en ce qui concerne les limites d’un fonctionnement sécurisé.

Notre simulateur ne permet pas de gérer les phénomènes thermiques. Toutefois, l’analogie thermique-électrique permet de contourner cet obstacle en les traitant comme des phénomènes électriques.

Pour que le comportement thermique intervienne de manière dynamique sur le comportement électrique, une solution consiste à remonter au modèle électrique de l’IGBT et le coder sous forme de sous circuit pour lequel la température est considérée comme paramètre.

La méthode mise en œuvre contournait la limitation thermique du simulateur. Ce dernier ne sait pas faire une analyse temporelle dans laquelle la température varie en fonction du temps. Par contre, il sait calculer un point de fonctionnement à une température imposée. On utilise cette possibilité en échantillonnant l’intervalle de simulation. Ce dernier est alors considéré comme un ensemble discret de points de fonctionnement.

On calcule le point de fonctionnement électrique (V_n, I_n) de l’IGBT à l’instant t_n pour le circuit constitué uniquement de modèle électrique à une température T_n. V_n et I_n sont alors injectés dans le circuit décrivant le modèle thermique de l’IGBT afin de calculer la température T_{n+1} à l’instant t_{n+1}. La température à l’instant t_{n+1} est utilisée pour calculer le nouveau point de fonctionnement et l’algorithme est bouclé sur l’intervalle de temps considéré Fig.II-53.

Une représentation unidimensionnelle de toutes les couches du système est utilisée pour modéliser un comportement thermique global entre la jonction et le boîtier. Chaque couche du composant est représentée par un modèle thermique (différence finie) caractérisé par sa conductivité thermique, sa capacité spécifique et sa géométrie (surface et épaisseur).

Ce modèle thermique proposé est implémenté sous le logiciel Matlab qui est un outil important. En effet, plusieurs types de systèmes peuvent être décrits notamment les systèmes électriques, mécaniques et thermiques.

Ainsi, le modèle obtenu permet non seulement d’estimer les températures dans le composant en fonctionnement normal mais aussi en fonctionnement extrême (surcharge par exemple) de courte durée. La prise en compte de la conductivité thermique a permis une correction des températures estimées.

tel que le courant, la tension ainsi que la température dans le composant de puissance et secondairement dans le système de puissance tout en tenant compte des non linéarités des semi-conducteurs.

Fig.II-53 Principe de calcul de la température de jonction dans le composant de puissance

II.3.6.4 Identification des paramètres thermosensibles

La mesure de la température de jonction peut s’effectuer par les méthodes directes ou indirectes. L’idée essentielle des méthodes indirectes consiste à relever la température à partir des effets observés sur certains paramètres thermosensibles (PTS) tel que, dans le cas des IGBT, la tension de seuil de conduction et le courant de saturation. Le principe de mesure des PTS consiste à faire passer un courant faible dans le composant. La valeur du PTS dépend directement de ce courant Fig.II-54. Par conséquent, le composant doit être traversé par le même courant pendant la phase de calibration et la phase de mesure.
Fig.II-54 Allure de la caractéristique $I_c=f(V_{ce})$ d’un IGBT : Identification des paramètres statiques V_0 et R_0

Les caractéristiques statiques de l’IGBT, dans sa zone linéaire, peuvent être modélisées par une droite de pente $1/R_0$ et d’abscisse à l’origine V_0. La chute de tension aux bornes de l’IGBT est exprimée dans la zone linéaire par [CALM 95] :

$$V_{CEsat} = V_0 + R_0 I_c$$ \hspace{1cm} (Eq II.29)

V_0 et R_0 sont dépendantes de la température.

Les lois de variation de V_0 et R_0 peuvent être approximées par les relations linéaires suivantes :

$$V_0 = V_{00} + a T_j$$ \hspace{1cm} (Eq II.30)

$$R_0 = R_{00} + b T_j$$ \hspace{1cm} (Eq II.31)

V_{00} représente la tension de seuil à $0^\circ C$, R_{00} : la résistance à $0^\circ C$, a et b : les coefficients de sensibilité à la température, T_j : la température de jonction en $^\circ C$.

Les figures II-55 et II-56 représentent les variations de V_0 pour deux structures épitaxiées à couche tampon (PT) : un IGBT discret IRGPC50U de International Rectifier et une puce IGBT extraite d’un module IGBT Semikron75 123D. La commande V_{GS} est fixée proche de la tension de seuil ($V_{th}=6V$) pour ne pas chauffer le composant. La température de l’IGBT est maintenue proche de la température de jonction en négligeant l’auto échauffement. Le courant dans l’IGBT est maintenu à 5 mA.
Variation de la tension V_0 en fonction de la température

Le composant de puissance ne devient conducteur que pour une tension de seuil supérieure à V_{th} et une tension de polarisation supérieure à la tension V_0. Néanmoins, la variation de la température de fonctionnement due aux pertes par commutation, au courant traversant le composant ou au milieu ambiant doit être prise en compte.

En outre, les Fig.II-55 et II-56 montrent que la variation de V_0 en fonction de la température pour la structure épitaxiée PT est décroissante pour une température croissante.

Par contre, d'autres études menées sur une puce d'IGBT BSM50GB100D à technologie homogène (NPT) montrent que la tension V_0 est croissante avec la température Fig.II-57.
Variation de la résistance R_0 en fonction de la température

La variation de la résistance R_0 est évaluée à partir du réseau de caractéristiques statiques $I_c=f(V_{ce})$ pour les différentes températures. Ainsi la pente de la zone linéaire est calculée pour chaque température Fig.II-58 et Fig.II-59.

Nous constatons que la résistance R_0 est très sensible à la variation de la température. Elle est croissante avec la température. La figure II-60 montre l’évolution de la résistance de l’IGBT Semikron 75GB 123 D en fonction de la température.

![Fig.II-58 Caractéristiques statiques de l’IGBT Semikron 75123D pour $T=25^\circ C$](image1.png)

![Fig.II-59 Caractéristiques statiques de l’IGBT Semikron 75123D pour $T=125^\circ C$](image2.png)

![Fig.II-60 Variation de R_0 de l’IGBT (d’un module Semikron 75 GB 123 D)](image3.png)
Variation de la tension de seuil

La tension de seuil V_{th} est la tension à l’origine de la formation du canal dans le MOS. Cette tension est dépendante de la température. Comme le montrent les figures II-61 et II-62, V_{th} est décroissante en fonction de la température pour les deux technologies homogène et épitaxiée.

Les mesures sont prélevées pour un faible courant traversant l’IGBT fixé à $I_c=1mA$ afin d’éviter l’auto échauffement et $V_{GE}=15V$.

La fonction V_{th} est exprimée théoriquement par l’équation :

$$V_{th} = V_{FB} + 2\psi_B + \sqrt{\frac{4q_2 \varepsilon_s N_A \psi_B}{C_{ox}}}$$

(Eq II.32)

avec

$$\psi_B = \frac{kT_{ch0} \ln \frac{N_A}{n_i}}{q}$$

(Eq II.33)

avec V_{FB} : potentiel de la bande plate.

C_{ox} : capacité de l’oxyde par unité de surface.

N_A : concentration des accepteurs.

n_i : concentration intrinsèque du silicium.

Ψ_B : potentiel de fermi du substrat.

ε_s : permittivité du silicium.

Fig. II-61 Variation de la tension de seuil V_{th} d’un module IGBT Semikron 75 123 D en fonction de la température.

Fig. II-62 Variation de la tension de seuil V_{th} d’un IGBT discret IRG4PC50U en fonction de la température.
Variation du courant de saturation

En court circuit, l’IGBT se retrouve avec un courant de court circuit égal au courant de saturation I_{sat} correspondant à la tension de grille utilisée. Le courant de saturation est l’un des paramètres les plus dépendants de la température. En effet, il apparaît dans son expression (Eq II.34) deux paramètres très sensibles à la température la tension de seuil (V_{th}) et la mobilité en surface (μ_{ns}) qui décroissent en fonction de la température. La pente d’évolution de V_{th} est négative en fonction de la température, ceci d’après le paragraphe précédent. La mobilité μ_{ns} décroît en fonction de la température à cause des mécanismes de collision entre électrons et trous.

$$I_{sat} = (1 + \beta_{pnp}) \frac{\mu_{ns} C_{ox} Z_C}{2L_c} (V_{GS} - V_{th})$$ \hspace{1cm} (Eq II.34)

Les figures II-63 et II-64 montrent l’évolution exponentielle du courant de saturation en fonction de la température. Ces courbes seront utiles pour la déduction de la température de jonction.

II.3.6.5 Modèle d’évaluation de la température de jonction

Le développement du modèle thermique dynamique à partir des impédances thermiques transitoires des composants semi-conducteurs est très utile puisqu’il permet l’estimation des températures maximales dans les structures durant leur fonctionnement.
De tels modèles doivent prendre en considération le « packaging » incluant la puce de silicium, les soudures et le boîtier.

L’estimation de la température s’effectue à partir des paramètres thermosensibles tel que la chute de tension à l’état passant V_{ce}, la tension de seuil V_{th} et le courant de saturation I_{sat}.

La plupart des composants semi-conducteurs discrets IGBTs, diodes, Mosfets sont formés essentiellement d’une couche de silicium, d’une couche de soudure et d’un boîtier Fig.II-65. Pour des courtes durées d’impulsion, l’impédance thermique devient sensible au rapport cyclique de l’onde de puissance. Il s’ensuit une variation de température dans le silicium.

Dans les composants IGBT en fonctionnement, la température n’est pas uniforme, l’écoulement de la chaleur est essentiellement un processus tridimensionnel comme le montre les équations II.25 et II.26. Le maximum de la répartition de température est atteint dans les zones actives dissipant la puissance.

Cependant, en considérant les structures verticales de puissance, on peut approximer que le flux de chaleur est unidimensionnel dans la structure. La chaleur circule perpendiculairement à la surface du silicium.

En vue de la conception des systèmes électriques, une prise en compte de l’auto échauffement du semi-conducteur est indispensable. Le modèle thermique est représenté à base de cellules RC (R étant la résistance thermique et C étant la capacité thermique) obtenues à partir d’une discrétisation de l’équation de la chaleur. Ces méthodes découlent de la méthode des différences finies (M.D.F). La précision de ces schémas électriques équivalents dépend de l’ordre du système.

Lorsque le composant est alimenté, l’énergie électrique est transformée en chaleur au niveau de la pastille de silicium par effet Joule. La température de la pastille s’élève. Cette chaleur est alors transmise au disque et au boîtier dans un rapport proportionnel à la surface et à la qualité du contact thermique considéré. A ce niveau, la chaleur est évacuée par convection et suit dans l’air ambiant. La chaleur peut être calculée localement dans six éléments modélisés par six capacités thermiques (exprimées en J/K) :

- $C1$ pour le semi-conducteur (silicium).
- $C2$ pour la première soudure.
- $C3$ pour l’interface Métal/Isolation.
- $C4$ pour l’isolation ALN.
- $C5$ pour la deuxième soudure.
- $C6$ pour le cuivre.
La dissipation thermique entre les différentes capacités thermiques et entre celles-ci et le milieu ambiant est représenté par des résistances thermiques (exprimés en K/W) :

- $R1$ pour le semi-conducteur (silicium).
- $R2$ pour la première soudure.
- $R3$ pour l’interface Métal/Isolation.
- $R4$ pour l’isolation ALN.
- $R5$ pour la deuxième soudure.
- $R6$ pour le cuivre.

Radiator : résistance du radiateur.

On a ainsi accès à six températures (exprimé en K) des différentes couches, Tj et Ta désignent respectivement la température du silicium et la température ambiante.

II.3.6.5.1 Calcul des impédances thermiques

La structure thermique adopté est représentée sur la figure II-66.

Fig.II-65 Modèle thermique de l’IGBT

Fig.II-66 Structure thermique de l’IGBT
w : épaisseur en mm ;

K : conductivité thermique en W/k.cm ;

ρC_V : chaleur massique en J/Kcm3 ;

S : surface en mm2.

$$R = \frac{w}{K S} \quad \text{(Eq II.35)}$$

$$C = w \rho C_V S \quad \text{(Eq II.36)}$$

R : résistance thermique en K/w.

C : capacité thermique en J/K.

$S=10\text{mm}^2$;

$R_1=0.28$ K/w ; $C_1=0.68.10^{-2}$ J/K ;

$R_2=0.15$ K/w ; $C_2=0.68.10^{-2}$ J/K ;

$R_3=0.097$ K/w ; $C_3=1.22.10^{-2}$ J/K ;

$R_4=0.636$ K/w ; $C_4=1.46.10^{-2}$ J/K ;

$R_5=0.294$ K/w ; $C_5=0.134.10^{-2}$ J/K ;

$R_6=0.347$ K/w ; $C_5=4.37.10^{-2}$ J/K ;

II.3.6.5.2 Résultats des simulations thermiques

La figure II-67 montre l'évolution du courant dans l'IGBT ainsi que la puissance dissipée totale sur un cycle de commutation. Le modèle thermique calcule la température instantanée de jonction du composant de puissance T_j.

Fig.II-67 Allure du courant dans l'IGBT (en haut), pertes en puissance vs temps
La figure II-68 montre la réponse en température de l’IGBT à des signaux périodiques carrés de commande. La température oscille à une allure exponentielle, avec des minima et des maxima respectivement à l’ouverture et la fermeture. Au bout d’un certains nombres de périodes, la température se stabilise et les pics de température deviennent identiques.

Fig.II-68 Réponse en température du modèle de l’IGBT étendu vs temps

II.4 Simulation

Comme application nous allons étudier le système de puissance embarqué dans le V.E dans un mode normal de fonctionnement et dans un mode défaillant. Le schéma fonctionnel présenté sur la figure II-69 montre la structure générale du système de puissance.
Nous proposons dans la suite de modéliser le convertisseur de puissance afin d’étudier le fonctionnement du système de puissance embarqué dans en mode normal et défaillant. Un modèle sans hypothèse d'équilibrage des tensions de la machine asynchrone a été utilisé (voir annexe 5).

II.4.1 Modélisation du convertisseur statique de puissance

La modélisation des convertisseurs représente un souci constant des électrotechniciens. Divers travaux ont été menés dans ce domaine. Nous pouvons distinguer plusieurs approches tendant à représenter soit l’évolution fine des grandeurs électriques (les modèles de commutation) soit leur valeurs moyennes (les modèles moyens).

Les circuits en électronique de puissance possèdent un nombre important d’équations. De plus, la plage des constantes de temps est relativement étendue pouvant varier de la nanoseconde à plusieurs millisecondes.

La fonction interrupteur présente l’inconvénient d’introduire des discontinuités qui impliquent des temps de simulation important.

Les convertisseurs de puissance réalisent la fonction « conversion d’énergie ». Le modèle moyen conserve cette fonction en faisant abstraction de la fonction interrupteur. Cela a pour effet de diminuer fortement les temps de simulation. Toutefois cette approche n’est applicable que si les constantes de temps du système extérieur au convertisseur varient lentement par rapport à la période de découpage. De plus les relations de causalité ne sont pas toujours aisées à formuler. Il en est de même pour la prise en compte des non linéarités notamment la variabilité de certains paramètres en fonction de la température.

Dans le cas du modèle de commutation, plusieurs niveaux de précision peuvent être définis. Au niveau le plus bas, les composants sont considérés comme de simples interrupteurs. Pour prendre en compte finement les commutations la physique des semi-conducteurs doit être considérée. Ce type de modèle peut permettre d’obtenir des estimations fines des pertes en commutation. Néanmoins, ce type d’approche conduit à des contraintes au niveau simulation (petit pas de calcul) dues aux transitions rapides des grandeurs électriques.

Par définition, le convertisseur statique est un système permettant d’imposer à la machine asynchrone un vecteur de tension dont la fréquence et l’amplitude sont variables à partir d’une source de tension continue.

L’onduleur de tension utilisé est composé de trois cellules de commutation indépendantes dont chacune est composée de deux interrupteurs Fig II-70. Chaque interrupteur est composé d’un transistor IGBT et d’une diode D montée en parallèle. Les deux interrupteurs d’un même
bras sont commandés de façon complémentaire. Ce modèle prend en compte les temps morts nécessaires à la décharge du composant de puissance par contre les temps minimaux de conduction nécessaires à la charge de ce dernier ne sont pas considérés. Il permet aussi de calculer les pertes dans l’onduleur. Les pertes en conduction dans les IGBT et les DIODES et les pertes par commutation.

![Diagram of an inverter structure](image)

Fig.II-70 Structure d’un onduleur de tension

II.4.2 Résultats de simulation

La figure II-71 montre respectivement du haut vers le bas le signal de commande sur le transistor T4 (transistor du bas du deuxième bras), l’évolution du courant statorique de la phase 1 qui est l’image du flux en régime permanent et enfin l’évolution de la vitesse de rotation. Au départ le courant I_{s1} est maintenu à sa valeur nominale. A un instant appelé "time fault", on provoque un défaut de circuit ouvert (C.O) sur la commande du transistor $T4$ qui entraîne un transitoire de courant dont la valeur moyenne est négative.

La figure II-72 montre les résultats de simulation en régime permanent et en présence de défaut de circuit ouvert respectivement du haut vers le bas le signal de commande du transistor T4 ainsi que les courants statoriques dans les trois phases I_{s1}, I_{s2} et I_{s3}. Un zoom est réalisé, sur la figure II-73, autour de la zone de défaut.
Fig. II-71 Evolution du courant statorique et de la vitesse de rotation avant et après le défaut du C.O.

Fig. II-72. Résultats de simulation (a) le signal de commande de l’IGBT_4 vs temps, (b) courant statorique de la phase 2 vs temps, (c) courant statorique de la phase 3 vs temps. (d) courant statorique de la phase 1 vs temps avant et après défaut.
Nous constatons que l’ouverture de l’interrupteur T_4 entraîne l’apparition d’une composante continue dans les courants de phase ; notamment le courant dans la phase 2 présente une forte composante continue. Cette dernière provoque un freinage de la machine se traduisant par une baisse de la vitesse de rotation.

II.5 Conclusion

L’utilisation croissante des convertisseurs dans les systèmes de l’électronique de puissance multiplie les sources de défaillances. Les composants de base deviennent de plus en plus complexes intégrant un grand nombre d’éléments avec de multiples interactions sur des surfaces de plus en plus réduites, ce qui les rend plus vulnérables. Il devient impératif de réduire les sources de défaillances ainsi que les conséquences de défaillances de ces composants.

Il en est de même pour les systèmes autonomes embarqués qui sont utilisés dans des environnements où la défaillance peut avoir des conséquences critiques aussi bien en terme de vies humaines qu’en terme d’économie.

D’autre part, la conception des systèmes embarqués a toujours été régie par des critères de performance en termes d’efficacité. L’une des évolutions essentielles concerne la prise en compte, depuis la phase de conception jusqu’à la phase opérationnelle, de besoins relatifs à
leurs sûretés de fonctionnement. Cela se traduit au niveau du convertisseur par des spécifications de robustesse qui demandent à appréhender les criticités de fonctionnement du système notamment les dépassements des grandeurs limites (courant, tension, température…). En outre, cela met au premier plan le rôle de la surveillance et de la supervision qui sont des tâches de plus haut niveau dans la hiérarchie du concept de sûreté de fonctionnement formalisé au chapitre précédent.
Ainsi, le système doit être capable de prendre en compte des événements imprévus, amenant le système dans un état incohérent avec un comportement de référence, à la suite d’une faute ou une défaillance. La prévision des fautes concerne l’évaluation de la sûreté de fonctionnement et des performances par modélisation ou par expérimentation dans l’objectif de prévoir les conséquences de fautes accidentelles et des malveillances sur la sûreté de fonctionnement.
Chapitre III

ESSAIS ET ANALYSES
Chapitre III- ESSAIS ET ANALYSES

Sommaire III

Chapitre III- ESSAIS ET ANALYSES ... 143
III.1 Introduction .. 147
III.2 Description du banc d’expérimentation ... 147
 III.2.1 Carte d’acquisition dSPACE DS1103 .. 152
 III.2.2 Dispositifs d’Entrée /Sortie ... 154
 III.2.3 Programmation temps réel de la carte DS1103 .. 154
III.3 Essais expérimentaux .. 156
 III.3.1 Condition expérimentale .. 156
 III.3.2 Validation en fonctionnement normal .. 157
 III.3.3 Validation du mode défaillant ... 158
 III.3.4 Résultat d’expérimentation ... 158
 III.3.5 Solution proposée ... 163
III.4 Analyse des défaillances ... 163
 III.4.1 Choix de la méthode d’analyse .. 163
 III.4.2 Analyse Multirésolution ... 164
 III.4.3 Analyse des défauts ... 170
 III.4.4 Surveillance du système .. 170
 III.4.5 Influence de l’instant du défaut .. 172
III.5 Exemples de cas de défaillances .. 175
 III.5.1 Cas d’une cellule de commutation ... 175
 III.5.2 Cas de deux IGBTs .. 178
III.6 Conclusion .. 181
III.1 Introduction

Dans ce chapitre, nous nous proposons de valider expérimentalement et de caractériser les modes de fonctionnement normal et dégradé du modèle du système de puissance, embarqué dans le véhicule électrique, dont les principes de base ont été théoriquement présentés et illustrés par des résultats de simulation au cours du chapitre précédent.

Dans un premier temps, nous présentons le banc d’expérimentation mis au point pour la validation des résultats de simulation. La commande numérique est bâtie autour d’une carte DSPACE 1103 bien adaptée aux applications dans le domaine de l’électronique de puissance. Nous présentons, ensuite, un ensemble de résultats expérimentaux réalisés avec le banc qui justifie la validité du modèle élaboré.

Finalement, dans le cadre du diagnostic et la surveillance du système de puissance, parmi toutes les méthodes nous nous intéressons à celles basées sur les techniques de traitement de signal, et plus particulièrement à la décomposition en Ondelettes. Comme nous l’avons déjà mentionné au chapitre I, ces méthodes de traitement de signal sont, par nature, proches du système surveillé, et principalement utilisées pour la génération d’alarmes. En outre, la transformée en Ondelettes présente la particularité de mettre en évidence les singularités d’un signal dans le plan « temps-échelle » [FUCH 03]. Cette propriété ainsi que d’autres de la transformée en Ondelettes sont exploitées afin de déteet en ligne des singularités présentes dans le signal analysé.

III.2 Description du banc d’expérimentation

Un banc d’expérimentation pour une chaîne de traction d’un véhicule électrique a été mis en œuvre au laboratoire L2EP de l’Ecole Centrale de Lille [BENN 03].

Ce banc comprend :

- Deux convertisseurs triphasés en cascade assurant le redressement et l’ondulation de la tension utilisant des interrupteurs synthétisés (bras IGBT avec diode de puissance en antiparallèle).
- Une machine asynchrone 1.8kW (LeRoy Somer).
- Une machine à courant continu à excitation séparée principalement utilisée comme charge en génératrice couplée à la machine asynchrone (sur le même arbre).
L’électronique de puissance renferme :
- Deux convertisseurs
- Des circuits d’aide à la commutation
- Un circuit de décharge.

L’électronique de mesure et de commande englobe un ensemble de cartes montées autour d’un radiateur en aluminium avec un ventilateur permettant de refroidir l’ensemble.
- La carte DSP :
La carte DSPACE DS 1103, insérée sur le bus ISA du PC, possède un contrôleur digital à architecture mixte RISC/DSP basée sur deux microprocesseurs (power PC 604e- 333 MHz et un processeur Texas instrument TMS320F240-20MHz) et quatre convertisseurs analogiques digitaux à hautes résolutions (0.8 μs – 12 bits) [DSPA 02]. La carte DSP DS1103 permet de générer les signaux de commande des interrupteurs. La conjonction des logiciels Simulink / Control Desk permet un calcul rapide en virgule flottante des différentes phases de la commande puis de les piloter en temps réel en agissant sur certains paramètres.
La description du banc d’expérimentation, incluant le convertisseur de puissance, par un schéma synoptique et par un schéma modulaire est montrée respectivement sur les figures III-1 et III-2.
- La carte de modulation
Elle est composée de multiplexeurs et d’un circuit programmable GAL [BENN 03]. Elle reçoit les signaux binaires fournis par la carte DSP (temps de commande des multiplexeurs, vecteur consigne de tension) et les convertit en signaux directement destinés à piloter le bras IGBT par le biais des cartes drivers.
- La carte de sécurité
Elle gère les défauts de type surintensité de courant et tension. Elle assure la protection du bus continu et commande le transistor du circuit de décharge.
- Les cartes drivers
Chaque cellule de commutation est munie d’une carte driver commandant ces deux IGBTs. Par conséquent, en adaptant les signaux provenant de la carte de modulation, elles génèrent une commande complémentaire pour éviter le court circuit sur le bus continu. En effet un ajustement des temps morts est effectué conformément aux caractéristiques techniques des IGBTs. Elles isolent l’électronique de puissance de l’électronique de mesure et adaptent les niveaux de commande pour les IGBTs.
• La carte de mesure
Cet
te carte multifonctionnelle assure la mesure des courants côté réseau et côté génératrice, ainsi que la tension continue. Elle alimente en continu les autres cartes en ±15v et 0 - 5v.
• La carte de synchronisation
Elle permet de connecter la carte DSP au réseau électrique en réalisant une fonction d’adaptation d’amplitude des tensions simples du réseau injectées sur les entrées de la carte DSP.

Fig.III-1 Synoptique du banc d’expérimentation
Fig.III-2 Schéma modulaire du banc expérimental

Une photographie prises sur le banc d’expérimentation montre une vue globale du système Fig.III-3.
La figure III-4 montre la partie onduleur avec l’ensemble des circuits d’aide à la commutation et le circuit de décharge.
Fig.III-3 Photo du banc d’expérimentation incluant le convertisseur de puissance
III.2.1 Carte d’acquisition dSPACE DS1103

Les systèmes dSPACE sont utilisés partout où des systèmes de contrôle mécatroniques rapides sont conçus et testés. Ils permettent d’optimiser un processus de développement notamment le développement permanent d'unités de contrôle en ingénierie automobile. Les produits de dSPACE sont utilisés dans diverses applications tel que le développement de systèmes de freinage brake-by-wire, le test d'unités de contrôle de l'habitacle…
Dans le contexte du contrôle des machines, l’unité de calcul doit être capable d’effectuer certains calculs à des fréquences assez élevées. De plus, sa structure doit permettre d’exécuter...
plusieurs tâches à des fréquences de récurrences différentes. En outre, dans le domaine de la recherche il est souvent nécessaire de pouvoir tester différents algorithmes de commandes en un temps de développement minimal, donc avec un environnement adapté aux outils que nous utilisons déjà, en particulier Matlab/Simulink. Ces considérations nous ont amené à retenir la solution dSPACE et le jeu de logiciel temps réel pour Simulink qui permet d’exécuter un bloc en temps réel. Cette unité de commande (PC) peut être utilisée sur tout banc dont le convertisseur est équipé de la carte de synchronisation. Toutefois, il nous a fallu réaliser quelques adaptations logicielles et matérielles avant d’arriver à ces résultats.

Présentation de la carte d’acquisition

La carte d’acquisition est une carte très performante comportant plusieurs processeurs et dispose de nombreuses entrées et sorties analogiques ou numériques ainsi que des encodeurs incrémentaux. Chaque processeur possède son compilateur C approprié (un pour PPC Motorola, un pour Slave DSP de Texas Instruments et un autre pour le Slave de SIEMENS). La carte dispose aussi d’une barrette de mémoire RAM indépendante et qui peut être augmentée. Cette carte peut être insérée au bus ISA de la carte mère d’un ordinateur compatible IBM.

PPC

La carte d’acquisition DS1103 est un système basé sur le processeur Maître (Master) Motorola 604 e PPC (333 MHZ clock), qui représente l’unité de traitement principale.

Unités d’Entrée/Sortie

Un ensemble de périphériques, fréquemment utilisés dans des systèmes de commande numérique, a été ajouté au PPC. Outre, les convertisseurs A/D et D/A, les ports numériques d’E/S, l’interface série, la carte PPC comprend aussi la commande des encodeurs incrémentaux.

Le sous ensemble DSP

Le DSP (Digital Signal Processing) est un processeur esclave (Slave) basé sur le Texas Instruments TMS320F240. Le DSP est particulièrement conçu pour la commande des systèmes électriques. Parmi les possibilités d’Entrée/Sortie, le DSP fournit la génération triphasée de PWM faisant un sous-ensemble utile pour le contrôle et le guidage d’applications.
Le sous ensemble CAN

Un autre sous-ensemble, basé sur le microcontrôleur de Siemens 80C164 (MC), est employé pour les connections entre les différents composants ADC.

Master PPC, Slave DSP, Slave MC

Le PPC a accès au DSP et aux sous-ensembles des CAN. En termes de communication interprocesseurs, le PPC est le maître, tandis que les DSP et le CAN MC sont des esclaves.

III.2.2 Dispositifs d’Entrée /Sortie

A/D Conversion
• 4 convertisseurs A/D parallèles, à quatre voies multiplexées chacun, avec une résolution de 16-bit, et un temps d’échantillonnage de 4 µs.
• 4 convertisseurs A/D avec 1 voie d’entrée pour chacun, avec une résolution de 12 bit et un temps d’échantillonnage de 800 ns.

Slave DSP ADC
• 2 convertisseurs A/D parallèles, à 8 voies multiplexés chacun, avec une résolution de 10-bit et un temps d’échantillonnage 6 µs.

Entrée/Sortie Numérique
• 32-bit input/output, avec possibilité de configuration bit-wise.
• 19-bit input/output, avec possibilité de configuration bit-wise.

D/A Conversion
• 2 convertisseurs D/A avec 4 voies chacun et une résolution de 14-bit.

Interface d’Encodeurs Incrémentaux
• 1 voie analogique avec compteur 22/38-bit.
• 1 voie numérique avec compteur 16/24/32-bit.
• 5 voies numériques avec compteur 24-bit.

Contrôleur d’Interruptions

E/S Série
• Interface UART standard pouvant être configurée alternativement en mode RS-232 ou RS-422 mode.

III.2.3 Programmation temps réel de la carte DS1103

La programmation temps réel de la carte DS1103 nécessite une bonne connaissance de l’environnement de contrôle de la carte DSPACE.
Pour le prototypage de fonctions sous MATLAB, l’utilisateur crée des modèles de commande sous Simulink. Grâce à la fonction BUILD MODEL les modèles sont traduits depuis l’extension *.MDL vers les codes en *.C et les bibliothèques #include en *.H tout en utilisant la boîte à outils REAL TIME WORKSHOP (RTI) de SIMULINK.

L’autre avantage est d’implémenter un grand nombre de fonctions et d’outils en un temps minimum, ce qui est plus pratique que la programmation manuelle en langage C. En tapant rti1103 dans l’interpréteur de MATLAB, la bibliothèque pour la création de modèles sous SIMULINK est obtenue.

Il existe différentes bibliothèques et chaque bloc représente une série de composants contenant une variété de programmes MATLAB qui, après BUILD seront assemblés pour être ensuite compilés et exécutés puis chargés et liés au processeur temps-réel de la carte DS1103, que ce soit le processeur MASTER PPC de Motorola, le Slave DSP de Texas Instruments ou bien l’autre processeur Slave de SIEMENS.

Après avoir lancé l’acquisition sous le logiciel Controldesk, et activé le mode Animation, chaque variable est associée à sa fenêtre d’utilisation tel que le plotter de visualisation ou au slider (bouton de réglage). Cela nous permettra de contrôler (piloter) facilement la simulation pendant l’acquisition du signal en temps-réel et sans avoir à modifier la valeur des variables associées.

Acquisition en temps réel d’un signal par Simulink

DS1103MUX_ADC_CON est souvent utilisé pour l’acquisition en temps réel d’un signal par Simulink. Ce bloc de la bibliothèque rti1103 de DSPACE peut être configuré pour faire l’acquisition jusqu’à 16 signaux Analogiques à travers les convertisseurs analogiques/digitaux ADC multiplexés avec la possibilité de choisir 4 entrées par bloc.

Ces convertisseurs ADC présentent les performances suivantes :
- Type : ADC à approximations successives.
- Résolution : 16 bits.
- Rapidité : caractérisée par la fréquence d’échantillonnage f=250 kHz.
- Temps d’acquisition : 4µs.
- Tension d’entrée : -10 à +10 volts au maximum.

Pour l’acquisition de notre signal, ce convertisseur nécessite l’ajout de gains pour le réglage.

Après la compilation du modèle par l’intermédiaire de la commande BUILD system de SIMULINK, le fichier *.SDF (System Descriptor File) est généré automatiquement par le compilateur et est ouvert à l’aide du logiciel Controldesk Automation pour charger l’interface
Chapitre III- ESSAIS ET ANALYSES

graphique *.LAY puis charger le fichier *.SDF au processeur MASTER PPC Motorola. La visualisation peut être alors lancée en utilisant le mode ANIMATION sous ControlDesk.

La dernière étape consiste à associer les différentes variables à leurs instruments d’affichage sur Control Desk. La Figure III-5 montre un écran de pilotage pour le contrôle du système de puissance. Les tracés, ci-dessus, montrent l’allure des différents courants statoriques avec leurs déphasages.

Fig. III-5 Ecran de pilotage du système de puissance

III.3 Essais expérimentaux

III.3.1 Condition expérimentale

Les six transistors du système de puissance de test dissipent la même puissance. L’un d’eux est destiné à relever les courants et les tensions en cas de défaut.

Les premiers essais ont été menés avec beaucoup de difficultés. En effet, la présence du défaut du circuit ouvert sur l’un des interrupteurs de puissance provoque une surélévation des courants statoriques, ce qui a eu pour conséquence l’échauffement puis l’endommagement de la machine asynchrone en fin d’expérimentation. Afin de diminuer la tension aux bornes de la
machine, nous avons inséré trois résistances de 3.9 Ω en série avec l’induit du moteur. Ce choix est motivé par le fait que la puissance dissipée dans les transistors de puissance ainsi que la machine asynchrone sont excessifs.

Un jeu de sonde est placé en différents points du système de puissance, afin d’observer les signaux de commande, les courants ainsi que les tensions statoriques.

La machine asynchrone utilisée dans cette étude, pour la validation expérimentale du modèle du système de puissance, est un moteur de 1.8 kW commercialisé par la société Leroy Somer.

La plaque signalétique donne les valeurs nominales suivantes :

<table>
<thead>
<tr>
<th>Pn</th>
<th>1.8 [Kw]</th>
<th>Lr</th>
<th>17.23 [mH]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vn</td>
<td>380 [V]</td>
<td>Lµ</td>
<td>216 [mH]</td>
</tr>
<tr>
<td>Rs</td>
<td>6.7 [Ω]</td>
<td>J</td>
<td>0.04 [Nms²]</td>
</tr>
<tr>
<td>Ls</td>
<td>2.16 [mH]</td>
<td>q</td>
<td>3</td>
</tr>
<tr>
<td>Rr</td>
<td>2.29 [Ω]</td>
<td>p</td>
<td>2</td>
</tr>
</tbody>
</table>

Tab.III-1 Les paramètres de la machine asynchrone

III.3.2 Validation en fonctionnement normal

Les apports de notre approche vis-à-vis de l’état de l’art sont significatifs au niveau de l’extension à la prise en compte des non linéarités des composants semi-conducteurs et les pertes en puissance voire à la gestion du système dans sa globalité. En effet, le modèle développé permet de rendre compte de manière cohérente du comportement de l’IGBT en fonctionnement normal et ainsi que lorsqu’il est soumis à un défaut de type circuit ouvert. Une bonne corrélation avec les mesures expérimentales effectuées a été obtenue Fig. III-6.

Toutefois, le travail qualitatif de validation des modèles de semi-conducteurs n’est pas l’objet de cette étude. C’est pourquoi, on considère que le modèle et sa mise en œuvre sont validés, les choix effectués lors de la création du modèle conduisent à une présentation réaliste de l’interrupteur de puissance.

La principale limite de ce modèle réside dans le fait qu’il gère les différents éléments du composant comme des entités indivisibles. Il lui est donc impossible de rendre compte des phénomènes suivants :

- Non homogénéité de la génération thermique au niveau de la jonction,
- Non homogénéité de la résistance thermique de contact entre deux éléments de l’IGBT.
Ces différents points ont été volontairement négligés, dans une première étape de ce travail, compte tenu du fait que, soit qu’ils sont négligeables dans les conditions normales d’utilisation de l’IGBT, soit ils caractérisent un fonctionnement dégradé du composant.

III.3.3 Validation du mode défaillant

Pour analyser le comportement de l’ensemble moteur/convertisseur en présence de défauts nous avons effectué des essais dans les conditions d’expérimentations sus-indiquées. Plusieurs défauts sont possibles mais ils ne seront pas tous considérés dans ce travail. Les défauts mécaniques et électriques du moteur ainsi que les défauts d’alimentation ne seront pas étudiés. Nous considérons seulement les défauts électriques du convertisseur statique qui se résument par :

- le défaut de court-circuit du composant de puissance,
- le défaut de circuit ouvert du composant de puissance.

Dans ce travail nous nous intéressons, en particulier, au défaut du circuit ouvert de l’IGBT du bas de la seconde cellule de l’onduleur.

On provoque l’ouverture du transistor de puissance sur une faible durée de temps de l’ordre 0.1s afin d’éviter d’endommager le transistor complémentaire, par les surtensions dues à l’absence d’un chemin de roue libre. En outre une protection rapide est nécessaire. Nous constatons une bonne correspondance entre les résultats de simulation et expérimentaux Fig.III-10.

III.3.4 Résultat d’expérimentation

La Fig.III-6 montre les résultats expérimentaux relevés sur la machine asynchrone lors du démarrage et en régime permanent. Le signal du haut représente le signal de commande de l’IGBT_4 du bas du bras 2 de l’onduleur, le signal du milieu est celui du courant statorique de phase_2 et le signal du bas correspond à la vitesse de la machine.
Chapitre III- ESSAIS ET ANALYSES

Fig.III-6 Résultats expérimentaux, (1) signal de commande de l’IGBT_4, (2) courant statorique de la phase_2 (3) vitesse en régime permanent

Les courants statoriques dans les trois phases ainsi que le signal de commande de l’IGBT du bas du deuxième bras sont montrés sur la figure III-7.

Fig.III-7 Résultats expérimentaux, (1) signal de commande de l’IGBT_4, (2), (3) et (4) les courants statoriques dans les trois phases
Un défaut de circuit ouvert est provoqué sur une durée précise. La Fig.III-9 montre les résultats expérimentaux relevés sur la machine asynchrone lors de l'apparition du défaut de circuit ouvert, le signal du haut représente le signal de commande de l’IGBT_4 du bas du bras 2 de l’onduleur, le signal du milieu est celui du courant statorique de phase_2 et le signal du bas correspond à la vitesse de la machine. Nous constatons que la vitesse de la machine se dégrade en présence du défaut.
Chapitre III- ESSAIS ET ANALYSES

Fig.III-9 Transitoire de défaut de circuit ouvert, (1) signal de commande de l’IGBT_4, (2) courant statorique de la phase_2 (3) vitesse en régime permanent

Les courants dans les trois phases en régime normal et en présence du défaut sont montrés sur la Fig.III-10-1. Du haut vers le bas sont représentés les signaux suivants : Le signal de commande de l’IGBT_4 du bas du bras 2 de l’onduleur, le courant statorique de phase_2, le courant statorique de phase_3 et le courant statorique de la phase_1.

Nous constatons une bonne correspondance des résultats expérimentaux avec ceux issus de la simulation Fig.III-10-1 et III.10-2.
Fig.III-10 Transitoire de défaut de circuit ouvert, (1) signal de commande de l’IGBT_4, (2) courant statorique de la phase 2, (4) courant statorique de la phase 3 et (3) courant statorique de la phase 1 : (a) par l’expérimentation et (b) par la simulation.
III.3.5 Solution proposée

Lorsque l’une des trois phases est coupée à cause d’un défaut de circuit ouvert du composant de puissance, il a été constaté par [ELCH 91] que la même courbe de la force magnétomotrice m.m.f peut être obtenue par les deux phases restantes.

Cependant des valeurs appropriées pour les courants de phase sont nécessaires pour avoir le même couple. Ainsi les courants de phase transformés dans un référentiel stationnaire ne sont pas affectés. Cependant, la composante homopolaire est non nulle.

Sous cette condition de défaut, nous proposons de connecter le point neutre du stator de la machine asynchrone au point milieu de l’alimentation continue ou bien à un quatrième bras d’onduleur. Alors l’onduleur peut appliquer aux phases restantes respectivement la moitié de la tension d’alimentation ou la totalité de la tension (en cas d’ajout de quatrième bras).

III.4 Analyse des défaillances

Pour aborder le problème de détection et d’isolation de défaut (localisation et identification), il convient d’adopter une représentation appropriée du système surveillé, sous forme d’un modèle comportemental de diagnostic prenant en compte les différentes sources de perturbation notamment les variations paramétriques ainsi que les défauts éventuels (circuit ouvert ou court-circuit) pouvant survenir dans le système [BENL 02].

III.4.1 Choix de la méthode d’analyse

L’analyse structurelle du modèle global permet alors d’obtenir la surveillabilité du système sur la base de l’instrumentation utilisée. Ceci permet alors à l’opérateur de placer convenablement, d’une façon graphique, les capteurs pour satisfaire le cahier des charges fixé.

De nombreuses contributions portent sur le diagnostic du système de puissance par des techniques de traitement du signal et en particulier des techniques d’analyse spectrale. Leur principal inconvénient est de ne pas généraliser au contexte de l’entraînement variable par rapport à l’échelle du temps notamment pour l’obtention d’une information précise au voisinage des fronts de courant ou tension.

Des techniques de redondance analytique ont été appliquées au diagnostic de la chaîne de puissance. Néanmoins, un problème vient alors de la nécessité d’estimer tous les paramètres ou de la non estimation des défauts.

Par conséquent, la méthode d’analyse par les techniques d’Ondelette semble la plus appropriée afin de surmonter cette difficulté, [KIM 02] [ANAN 95]. Celle-ci présente la
particularité de mettre en évidence les singularités d’un signal dans le plan « temps-échelle ». Si de plus la fonction d’analyse (appelée Ondelette mère) est bien localisée temporellement, le retard à la détection sera « très faible » [LI 00]. Ces propriétés de la transformée en Ondelettes ont été exploitées afin de détecter en ligne des singularités présentes dans le signal analysé.

Le choix de l’Ondelette mère est très important dans l’optique de l’utilisation des coefficients d’Ondelette comme détecteurs. Ce détecteur transpose la procédure de décision dans un domaine transformé. En outre, il convient de choisir des fonctions mères d’allure voisine des signatures que l’on désire détecter [GUOG 02]. Notre choix s’est porté sur une Ondelette Daubechies dont la forme est proche de celle des signatures Fig.III-11, [DAUB 90].

Fig.III-11 Allure d’une Ondelette Daubechies

III.4.2 Analyse Multirésolution

L’analyse de Fourier à court terme [FLAN 93] (ou à fenêtre glissante) permet d’analyser l’évolution du contenu fréquentiel d’un signal au cours du temps. Elle effectue un pavage régulier de l’espace temps-fréquence. La conséquence est qu’une bonne localisation temporelle (correspondant à une fenêtre étroite) est faite au détriment de la localisation fréquentielle, et inversement. Pour pallier à cet inconvénient, la transformée en Ondelettes permet une variation inverse des deux résolutions en conservant un produit constant afin de garantir un pavage énergétiquement régulier de l’espace temps-fréquence [TRUC 98]. La transformée en Ondelettes Continue s'exprime par :

\[
CWT_{a,b}(s) = \int_{-\infty}^{\infty} s(t) \psi_{a,b}(t) dt \tag{Eq III.1}
\]

On projette le signal \(s(t) \) sur une famille de fonctions analysantes \(\psi_{a,b}(t) \) construites à partir d’une fonction mère \(\psi \) .
Chapitre III- ESSAIS ET ANALYSES

\[\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right) \]

(Eq III.2)

où \(a \) est le facteur d’échelle tandis que \(b \) est le paramètre de translation de la fonction.

Cette transformation continue introduit naturellement de la redondance dans la mesure où l’on augmente l’espace de représentation. Ainsi, les coefficients \(CWT_{a_1,b_1} \) et \(CWT_{a_2,b_2} \) sont voisins si les atomes du plan temps-fréquence qu’ils décrivent se superposent. De ce fait, ils contiennent de l’information commune [STRA 96].

La redondance peut être diminuée (voire annulée) en discrétisant les paramètres \(a \) et \(b \), ce qui conduit à la transformée en Ondelettes Discrète.

\[DWT_{m,n}(s) = \int_{-\infty}^{\infty} s(t) \psi_{m,n}(t) dt \]

(Eq III.3)

où

\[\psi_{m,n}(t) = \frac{1}{\sqrt{a_0^m}} \psi(a_0^{-m}t - nb_0) \]

(Eq III.4)

Si de plus, on choisit \(a_0 = 2, b_0 = 1 \), on obtient la transformée dyadique qui a la particularité de découper le domaine fréquentiel en octave [STRA 96]. Comme citées précédemment, les Ondelettes permettent d’obtenir une résolution temps-fréquence d’un signal physique. Nous n’avons plus de contrainte de représentation du signal. Une première approche consiste à effectuer une transformée en Ondelettes continues, analogue à la transformée de Fourier. De même, un algorithme rapide appelé Fast Fourier Transform a été établi permettant une économie substantielle de calculs. Dans le cas des Ondelettes, un tel algorithme existe également : la multirésolution.

Une multirésolution analyse le signal à haute fréquence, pour en prélever les détails, ensuite elle analyse le signal à une résolution deux fois moins fine, et elle réitère l’opération en grossissant son échelle d’un facteur deux, sans se préoccuper des échelles intermédiaires, jusqu’à obtenir une description complète du signal. En général, la description du signal à six échelles différentes est suffisante pour décrire le signal.

Parmi les différentes transformées en Ondelettes, nous distinguons l’analyse multirésolution avec des bases orthonormées. Ainsi le signal initial est projeté sur des sous-espaces \(V_j \) emboîtés les uns dans les autres, et tel que l’espace \(V_{j+1} \) contienne un signal plus « grossier » (i.e. une approximation) que l’espace \(V_j \). On définit également un espace \(W_j \) tel que \(V_{j+1} \cap W_j \) dans lequel on retrouve les détails du signal « perdus » lors de la projection de l’espace \(V_j \) à l’espace \(V_{j+1} \) (cf. Figure III-12)
L’analyse multirésolution peut également être interprétée en terme de filtrage numérique. Les approximations du signal aux différentes échelles sont obtenues par l’intermédiaire d’un filtre passe-bas h tandis que les détails sont calculés en utilisant un filtre passe-haut g. Ce qui conduit à l’algorithme d’analyse donné Fig.III-13 [ANAN 95].

$\downarrow 2$ est un sous-échantillonnage d’un facteur 2.
Lorsque les données sont échantillonnées, les approximations et détails sont obtenus par de simples produits scalaires.

La démarche présentée précédemment a été appliquée sur des données issues de la chaîne de traction au problème de la détection de défaillances. Nous avons choisi comme fonction d’analyse l’Ondelette de Daubechies car elle est particulièrement bien adaptée à une implantation en temps réel de la procédure de détection. En effet, ses filtres associés h et g ne possèdent chacun que deux coefficients. Ainsi, le coût de calcul nécessaire à la
détermination des coefficients d’Ondelettes \(d^j_k \) sera minimal. De plus, elle permet de détecter des discontinuités, ce qui est recherché ici.

Après des tests sur des signaux avec et sans défauts, nous avons choisi de décomposer le signal \(c_j \) sur 6 niveaux \((J = 6)\).

Sur la Figure III-14, nous avons reporté le résultat obtenu pour les trois courants statoriques. Pour ce même fichier. La Figure III-15 montre les coefficients d’Ondelettes \(d^j_k \) pour les 6 niveaux d’analyse. On voit apparaître clairement des taux d’alarme élevés en présence d’un défaut de circuit ouvert. Les algorithmes ont été implantés dans l’environnement Matlab avec un réel souci d’une transposition aisée sur un calculateur cible (DSP par exemple) pour une utilisation en ligne du produit développé.
Fig. III-14 Défaut de circuit ouvert sur le Transistor T4 : (a) 3 phases de courant statorique, (b) approximation du niveau 6 du courant statorique
Fig. III-15 Défaut de circuit ouvert sur le Transistor T4 : 6 niveaux de détails avec l’approximation du niveau 6 de la phase 1, 2 et 3 courant statorique
III.4.3 Analyse des défauts

Une analyse des signaux est effectuée sur les 6 niveaux de détails ainsi que les coefficients d’approximation montrée sur les figures III-14 et III-15. Nous constatons que la valeur moyenne du courant statorique, en régime permanent, est nulle. Lorsqu’un défaut de circuit ouvert apparaît sur l’interrupteur de puissance, une information de défaut sur les signaux est incluse dans chaque plage fréquentielle. Il existe des pics sur les 6 niveaux de détail. Le temps correspondant à ces pics est en corrélation avec le temps de survenu du défaut. En effet, le défaut introduit un niveau non nul d’offset qui est nettement observé sur le niveau d’approximation 6.

En outre, nous constatons l’ajout d’une composante continue importante sur la phase de défaut par comparaison aux autres phases. Une étude sur le domaine temporel permet de séparer le système en défaut du système normal. En effet, les niveaux de détails 6 et 5 sont différents.

En outre, l’analyse des différents niveaux de détails et d’approximation montre que le niveau du signal augmente sur certaines plages de fréquence et diminue sur d’autres. Cela signifie qu’il y’a augmentation d’énergie sur une plage de fréquence et une diminution sur d’autres régions. Pour quantifier les caractéristiques extraites à partir de la décomposition en Ondelettes, on définit la valeur moyenne de l’énergie dans un signal donné comme :

\[E = \frac{1}{N} \sum_{i=1}^{6} s_i^2 \]

(Éq III.5)

où \(N \) est le nombre d’échantillons, \(i = 1, \ldots, 6 \) et \(s_i \) correspond aux niveaux de détails \(d1, \ldots, d6 \) et le niveau d’approximation \(a6 \).

III.4.4 Surveillance du système

Cette approche qui permet de classer les défauts de circuit ouvert de l’IGBT dans le convertisseur statique est déterministe en nature. En effet, à partir des tables III-2 à III-4, nous constatons que la méthode de l’énergie est bien adaptée à la classification de cette catégorie de défaut et la corrélation avec la valeur moyenne des coefficients d’approximation permet de séparer de manière fiable les défauts de l’IGBT du haut de celui du bas sur une même cellules de commutations.
TABLE III-2
Energie moyenne calculée à partir des coefficients d’Ondelette extraite du courant statorique Is1

<table>
<thead>
<tr>
<th>Is1</th>
<th>a6</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>No/fault</td>
<td>1.5182</td>
<td>0.0825</td>
<td>0.4799</td>
<td>0.7222</td>
<td>4.4092</td>
<td>22.1590</td>
<td>0.8816</td>
<td>30.2527</td>
</tr>
<tr>
<td>IGBT1</td>
<td>26.8608</td>
<td>0.0936</td>
<td>0.5721</td>
<td>0.9848</td>
<td>5.4092</td>
<td>26.5568</td>
<td>1.0032</td>
<td>61.4805</td>
</tr>
<tr>
<td>IGBT2</td>
<td>26.4956</td>
<td>0.0863</td>
<td>0.6406</td>
<td>0.9285</td>
<td>4.8275</td>
<td>27.6019</td>
<td>1.0553</td>
<td>61.6337</td>
</tr>
<tr>
<td>IGBT3</td>
<td>12.7254</td>
<td>0.0952</td>
<td>0.5555</td>
<td>0.9347</td>
<td>5.7252</td>
<td>27.2220</td>
<td>1.5561</td>
<td>48.8142</td>
</tr>
<tr>
<td>IGBT4</td>
<td>10.7991</td>
<td>0.0956</td>
<td>0.6513</td>
<td>0.9401</td>
<td>5.2213</td>
<td>30.5435</td>
<td>1.5586</td>
<td>49.8095</td>
</tr>
<tr>
<td>IGBT5</td>
<td>6.9758</td>
<td>0.0896</td>
<td>0.5263</td>
<td>0.8525</td>
<td>5.0845</td>
<td>24.7549</td>
<td>1.5561</td>
<td>48.8142</td>
</tr>
<tr>
<td>IGBT6</td>
<td>9.4948</td>
<td>0.0932</td>
<td>0.6069</td>
<td>0.8573</td>
<td>5.6609</td>
<td>26.7690</td>
<td>1.6587</td>
<td>45.0808</td>
</tr>
</tbody>
</table>

TABLE III-3
Energie moyenne calculée à partir des coefficients d’Ondelette extraite du courant statorique Is2

<table>
<thead>
<tr>
<th>Is2</th>
<th>A6</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>No/fault</td>
<td>1.5719</td>
<td>0.0810</td>
<td>0.5533</td>
<td>0.6484</td>
<td>4.1246</td>
<td>22.5567</td>
<td>1.2180</td>
<td>30.7539</td>
</tr>
<tr>
<td>IGBT1</td>
<td>9.0236</td>
<td>0.1020</td>
<td>0.6922</td>
<td>0.8829</td>
<td>5.3208</td>
<td>28.1939</td>
<td>2.2372</td>
<td>46.4525</td>
</tr>
<tr>
<td>IGBT2</td>
<td>11.0746</td>
<td>0.0934</td>
<td>0.6504</td>
<td>0.9718</td>
<td>5.2505</td>
<td>28.3399</td>
<td>1.4029</td>
<td>47.7835</td>
</tr>
<tr>
<td>IGBT3</td>
<td>31.1614</td>
<td>0.0875</td>
<td>0.6259</td>
<td>0.8648</td>
<td>4.8491</td>
<td>26.0840</td>
<td>1.3490</td>
<td>65.0218</td>
</tr>
<tr>
<td>IGBT4</td>
<td>25.2554</td>
<td>0.0864</td>
<td>0.6147</td>
<td>0.9420</td>
<td>4.7931</td>
<td>28.6702</td>
<td>1.2139</td>
<td>61.5756</td>
</tr>
<tr>
<td>IGBT5</td>
<td>17.2117</td>
<td>0.0854</td>
<td>0.5881</td>
<td>0.7765</td>
<td>5.0160</td>
<td>25.7967</td>
<td>1.6373</td>
<td>51.1117</td>
</tr>
<tr>
<td>IGBT6</td>
<td>9.1859</td>
<td>0.0903</td>
<td>0.6762</td>
<td>0.7762</td>
<td>5.3572</td>
<td>28.0793</td>
<td>2.3163</td>
<td>46.4814</td>
</tr>
</tbody>
</table>

TABLE III-4
Energie moyenne calculée à partir des coefficients d’Ondelette extraite du courant statorique Is3

<table>
<thead>
<tr>
<th>Is3</th>
<th>A6</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>No/fault</td>
<td>1.9183</td>
<td>0.0804</td>
<td>0.5764</td>
<td>0.6229</td>
<td>4.1398</td>
<td>22.9710</td>
<td>0.9092</td>
<td>31.2180</td>
</tr>
<tr>
<td>IGBT1</td>
<td>8.3908</td>
<td>0.6978</td>
<td>0.0982</td>
<td>0.8794</td>
<td>5.5258</td>
<td>29.6539</td>
<td>2.0512</td>
<td>47.2981</td>
</tr>
<tr>
<td>IGBT2</td>
<td>9.1657</td>
<td>0.0918</td>
<td>0.6378</td>
<td>0.9379</td>
<td>5.2424</td>
<td>30.0420</td>
<td>1.9312</td>
<td>48.0487</td>
</tr>
<tr>
<td>IGBT3</td>
<td>8.9171</td>
<td>0.0948</td>
<td>0.6946</td>
<td>0.7933</td>
<td>5.2317</td>
<td>27.4951</td>
<td>1.0984</td>
<td>44.3249</td>
</tr>
<tr>
<td>IGBT4</td>
<td>8.8846</td>
<td>0.1044</td>
<td>0.7461</td>
<td>0.8068</td>
<td>5.1303</td>
<td>28.9314</td>
<td>1.4715</td>
<td>46.0751</td>
</tr>
<tr>
<td>IGBT5</td>
<td>35.9996</td>
<td>0.0797</td>
<td>0.6033</td>
<td>0.7735</td>
<td>4.5091</td>
<td>24.5161</td>
<td>0.6307</td>
<td>67.1119</td>
</tr>
<tr>
<td>IGBT6</td>
<td>31.1378</td>
<td>0.0894</td>
<td>0.6468</td>
<td>0.7869</td>
<td>4.9930</td>
<td>25.9120</td>
<td>1.4801</td>
<td>65.0460</td>
</tr>
</tbody>
</table>

La table III-5 montre les coefficients d’approximation relatifs aux signaux Is1, Is2 et Is3 en considérant à chaque fois le défaut de circuit ouvert sur l’un des IGBT de l’onduleur. Nous remarquons que chaque défaut est caractérisé par une combinaison typique de polarité d’offset caractérisant l’ IGBT en défaut. Ce résultat permet de localiser le défaut par le test de la valeur d’offset. Ainsi comme issue de ce travail, la combinaison de la méthode d’analyse avec un système intelligent tel que les techniques de la logique floue offre de grandes possibilités à surveiller un système de puissance embarqué dans le véhicule électrique sur un grand éventail de défauts.
Chapitre III- ESSAIS ET ANALYSES

<table>
<thead>
<tr>
<th>Valeur moyenne de l’Approx. Niveau 6</th>
<th>Is1</th>
<th>Is2</th>
<th>Is3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a6 no fault</td>
<td>-0.0504</td>
<td>-0.0573</td>
<td>-0.0069</td>
</tr>
<tr>
<td>a6 IGBT1</td>
<td>-2.5983</td>
<td>1.4364</td>
<td>1.1620</td>
</tr>
<tr>
<td>a6 IGBT2</td>
<td>2.6604</td>
<td>-1.5128</td>
<td>-1.1476</td>
</tr>
<tr>
<td>a6 IGBT3</td>
<td>1.6380</td>
<td>-2.9198</td>
<td>1.2818</td>
</tr>
<tr>
<td>a6 IGBT4</td>
<td>-1.1974</td>
<td>2.4311</td>
<td>-1.2337</td>
</tr>
<tr>
<td>a6 IGBT5</td>
<td>1.3043</td>
<td>2.2398</td>
<td>-3.5441</td>
</tr>
<tr>
<td>a6 IGBT6</td>
<td>-1.5289</td>
<td>-1.5356</td>
<td>3.0645</td>
</tr>
</tbody>
</table>

| TABLE III-5 | | | |
| Valeur moyenne de l’approx. Niveau 6 de Is1, Is2 et Is3 |

En considérant un taux de d’échantillonnage de 4780 échantillons par seconde, la table III-6 montre les bandes de fréquence caractérisant chaque niveau de décomposition.

<table>
<thead>
<tr>
<th>coeff. de décomp.</th>
<th>Bande de Fréquence</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>1195-2390 Hz</td>
</tr>
<tr>
<td>d2</td>
<td>597-1195 Hz</td>
</tr>
<tr>
<td>d3</td>
<td>298-597 Hz</td>
</tr>
<tr>
<td>d4</td>
<td>149-298 Hz</td>
</tr>
<tr>
<td>d5</td>
<td>74-149 Hz</td>
</tr>
<tr>
<td>d6</td>
<td>37-74 Hz</td>
</tr>
<tr>
<td>a6</td>
<td>0-37 Hz</td>
</tr>
</tbody>
</table>

| TABLE III-6 | | |
| Bandes de fréquence relatives à chaque échelle de décomposition |

III.4.5 Influence de l’instant du défaut

Afin d’étudier l’influence de l’instant de défaut sur les paramètres de surveillance, nous avons effectué une série de simulation pour différents instants de défauts. Un défaut de circuit ouvert a été provoqué sur l’IGBT du bas du deuxième bras aux instants t0=1,643 s, t1=1,653 s et t2=1,5 s.

La figure III-16 montre une superposition des coefficients de détails ainsi que les coefficients d’approximation, qui ont était extrait à partir des courants statoriques Is1, Is2 et Is3, aux instants t0 et t1. De même la figure III-17 présente une superposition des coefficients de détails d’approximation aux instants t0 et t2.

Nous constatons que ces coefficients donnent une bonne indication temporelle sur l’occurrence du défaut.
Fig. III-16 Coefficients de détails et d’approximation, extraits des courants statoriques Is1, Is2 et Is3, aux instants t0 (bleu) et t1 (rouge).
Fig. III-17 Coefficients de détails et d’approximation, extraits des courants statoriques I_{s1}, I_{s2} et I_{s3}, aux instants t_0 (bleu) et t_2 (rouge).
Cependant, l’énergie moyenne calculée à partir des coefficients d’approximation et de détails, dans les trois cas de figure, révèle qu’il n’y a pas de dépendance de l’amplitude d’énergie dans chaque niveau - instant de défauts Tab III-7 à III-9. En outre, nous constatons une similitude dans les variations des différentes valeurs. Une forte densité d’énergie caractérise la phase qui comporte le composant défaillant.

TABLE III-7

<table>
<thead>
<tr>
<th>(t_0=1.643s)</th>
<th>a6</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is1</td>
<td>11.0587</td>
<td>0.0793</td>
<td>0.5270</td>
<td>0.7988</td>
<td>4.2893</td>
<td>24.5662</td>
<td>2.3994</td>
<td>43.7188</td>
</tr>
<tr>
<td>Is2</td>
<td>46.1537</td>
<td>0.0706</td>
<td>0.5086</td>
<td>0.7595</td>
<td>3.9433</td>
<td>23.4966</td>
<td>1.0681</td>
<td>76.0004</td>
</tr>
<tr>
<td>Is3</td>
<td>20.2673</td>
<td>0.0847</td>
<td>0.6109</td>
<td>0.6880</td>
<td>4.2563</td>
<td>23.4417</td>
<td>1.7793</td>
<td>51.1282</td>
</tr>
</tbody>
</table>

Energie moyenne calculée à partir des coefficients d’Ondelette extraite des courants statoriques à l’instant de défaut \(t_2=1.643s \).

TABLE III-8

<table>
<thead>
<tr>
<th>(t_1=1.653s)</th>
<th>a6</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is1</td>
<td>11.3129</td>
<td>0.0969</td>
<td>0.6451</td>
<td>0.9573</td>
<td>5.2700</td>
<td>29.9696</td>
<td>2.9582</td>
<td>51.2101</td>
</tr>
<tr>
<td>Is2</td>
<td>26.6441</td>
<td>0.0863</td>
<td>0.6281</td>
<td>0.9326</td>
<td>4.8267</td>
<td>28.6640</td>
<td>1.3116</td>
<td>63.0935</td>
</tr>
<tr>
<td>Is3</td>
<td>6.9577</td>
<td>0.1040</td>
<td>0.7548</td>
<td>0.8184</td>
<td>5.1719</td>
<td>28.5717</td>
<td>2.2657</td>
<td>44.6443</td>
</tr>
</tbody>
</table>

Energie moyenne calculée à partir des coefficients d’Ondelette extraite des courants statoriques à l’instant de défaut \(t_2=1.653s \).

TABLE III-9

<table>
<thead>
<tr>
<th>(t_2=1.5s)</th>
<th>a6</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is1</td>
<td>8.2302</td>
<td>0.0952</td>
<td>0.6598</td>
<td>1.0058</td>
<td>5.6096</td>
<td>31.0127</td>
<td>3.4822</td>
<td>50.0955</td>
</tr>
<tr>
<td>Is2</td>
<td>31.2869</td>
<td>0.0842</td>
<td>0.6198</td>
<td>0.9620</td>
<td>4.8519</td>
<td>28.7618</td>
<td>1.1220</td>
<td>67.6886</td>
</tr>
<tr>
<td>Is3</td>
<td>10.8150</td>
<td>0.1043</td>
<td>0.7872</td>
<td>0.8409</td>
<td>5.5843</td>
<td>29.4831</td>
<td>2.7331</td>
<td>50.3479</td>
</tr>
</tbody>
</table>

Energie moyenne calculée à partir des coefficients d’Ondelette extraite des courants statoriques à l’instant de défaut \(t_2=1.5s \).

III.5 Exemples de cas de défaillances

L’objectif de cette partie est l’exploitation de notre simulateur pour l’étude de défaut de non fermeture de deux interrupteurs. Cette étude sera effectuée, d’abord, avec des défauts de non-fermeture sur les deux interrupteurs d’un même bras de l’onduleur; ensuite avec deux interrupteurs de bras différents.

III.5.1 Cas d’une cellule de commutation

Un défaut de circuit ouvert a été provoqué, à l’instant 1.5s, sur le premier bras (IGBT_a + IGBT_b). Nous constatons que le courant de la phase défaillante est nul quant aux deux autres phases les courants présentent une composante continue quasi nulle. Les forts courants de phase stressent les composants de puissance de l’onduleur. Cependant, la vitesse de rotation...
Chapitre III- ESSAIS ET ANALYSES

de la machine asynchrone présente une légère oscillation sans une dégradation notable. Ainsi, la machine peut continuer à tourner.

Fig.III-18 Allure des courants statoriques avant et après apparition du défauts sur un bras

Fig.III-19 Allure de la vitesse et du couple avant et après apparition de la défaillance
La technique des Ondelettes a été utilisée pour l’analyse des signaux de sorties (courants statoriques) Fig.III-20. L’instant de défaut est marqué par des variations au niveau des coefficients d’approximation et le détail de niveau 6 [SERG 03].

Fig.III-20 Coefficients de détails et d’approximation du niveau 6 des courants statoriques avant et après apparition du défaut
L’énergie moyenne est calculée à partir des coefficients d’Ondelette extraits des courants statoriques Tab III-10. Ce mode de défaillance peut être caractérisé par une faible densité d’énergie sur la phase 1 du courant statorique.

<table>
<thead>
<tr>
<th>T2=1.5s</th>
<th>a6</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is1</td>
<td>1.8147</td>
<td>0.0634</td>
<td>0.3896</td>
<td>0.5796</td>
<td>3.8646</td>
<td>19.517</td>
<td>0.8026</td>
<td>27.032</td>
</tr>
<tr>
<td>Is2</td>
<td>4.4696</td>
<td>0.0708</td>
<td>0.4876</td>
<td>0.6049</td>
<td>3.7560</td>
<td>21.095</td>
<td>1.5784</td>
<td>32.063</td>
</tr>
<tr>
<td>Is3</td>
<td>8.1305</td>
<td>0.0672</td>
<td>0.5158</td>
<td>0.6318</td>
<td>3.9027</td>
<td>22.275</td>
<td>1.5068</td>
<td>37.030</td>
</tr>
</tbody>
</table>

TABLE III-10
Energie moyenne calculée à partir des coefficients d’Ondelette extraite des courants statoriques ; défaut à t2=1.5s dans le cas de défaut C.O sur le bras 1 (igbt a+igbt b)

III.5.2 Cas de deux IGBTs

Comme deuxième exemple d’étude, nous avons considéré le cas de défaut de circuit ouvert provoqué sur le composant du haut du premier bras de l’onduleur et le composant du bas du troisième bras. Le courant passe par un transitoire où le courant atteint des valeurs de l’ordre de 5 fois le courant nominal Fig.III-21. Pendant que la vitesse de la machine chute d’une manière rapide à cause des forts courants du transitoire, le couple électromagnétique subit des oscillations non périodiques et assez fortes Fig.III-22. La machine aura tendance à freiner à cause des fortes distorsions.

De même que précédemment, l’analyse des signaux de sorties (courants statoriques) a été effectuée en utilisant la transformation en Ondelettes Fig.III-23. Nous remarquons, dans ce cas d’étude, que les coefficients d’approximation et de détail de niveau 6 extraits du courant statorique de la phase 2 (Is1) sont quasi nuls. Alors que, les coefficients d’approximation et de détail de niveau 6 extraits des courants statoriques de la phase 1 et 3 sont symétriques. Cette constatation peut être exploitée pour générer une base de connaissance exploitable pour automatiser le diagnostic [LOAN 01].
Fig. III-21 Allure des courants statoriques avant et après apparition du défauts sur les deux composants de bras différents

Fig. III-22 Allure de la vitesse et du couple avant et après apparition de la défaillance défauts sur les deux composants de bras différents
Fig III-23 Coefficients de détails et d’approximation du niveau 6 des courants statoriques avant et après apparition du défaut
L’énergie moyenne calculée à partir des coefficients d’Ondelette extraite des courants statoriques montre une forte densité d’énergie sur la phase 1 et 3 par rapport à la phase 2 caractérisant ce mode de défaillance Tab III-11.

<table>
<thead>
<tr>
<th>T2=1.5s</th>
<th>a6</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is1</td>
<td>75.6026</td>
<td>0.0904</td>
<td>0.5664</td>
<td>0.9321</td>
<td>6.2000</td>
<td>27.7565</td>
<td>1.7583</td>
<td>112.9062</td>
</tr>
<tr>
<td>Is2</td>
<td>4.4481</td>
<td>0.0995</td>
<td>0.7209</td>
<td>1.0358</td>
<td>7.9032</td>
<td>29.7308</td>
<td>3.6153</td>
<td>47.5535</td>
</tr>
<tr>
<td>Is3</td>
<td>71.3042</td>
<td>0.0857</td>
<td>0.6651</td>
<td>0.7261</td>
<td>6.0203</td>
<td>28.9420</td>
<td>1.4684</td>
<td>109.2118</td>
</tr>
</tbody>
</table>

TABLE III-11

Energie moyenne calculée à partir des coefficients d’Ondelette extraite des courants statoriques ;
défaut à t2=1.5s dans le cas de défaut C.O sur deux IGBT (igbt a+igbtf)

III.6 Conclusion

A partir des caractéristiques statiques et dynamiques le modèle électrothermique d’IGBT a été construit et restitue des résultats réalistes. Néanmoins, le temps de calcul reste encore important.

Le modèle de convertisseur à IGBT que nous proposons permet de simuler le comportement de l’interrupteur de puissance dans différents régimes de fonctionnement notamment en mode normal et en défaut. L’application de méthodes de diagnostic, destiné ici à la détection et à l’analyse des situations de défaillances, donne des résultats intéressants. La méthode de diagnostic choisie utilise les nouvelles techniques de traitement de signal : la transformée en Ondelettes. Celle-ci présente la particularité de mettre en évidence des singularités du signal dans le plan échelle–temps cette propriété a été exploitée afin de surveiller (détecter et localiser) des singularités présentes dans le signal. Enfin, notre outil est utilisé pour la caractérisation de trois cas de défaillances. Celles-ci constituent les premiers éléments d’une banque de données.
CONCLUSION GENERALE
Notre objectif à court terme est d'intégrer une approche de surveillance, pour le système de puissance embarqué dans le véhicule électrique, pour en faire un système sûr de fonctionnement. En effet, l’une des évolutions essentielles dans la conception des systèmes concerne la prise en compte, dès les premières phases, des préoccupations de sûreté de fonctionnement. Ainsi un système de surveillance doit être intégré très tôt dans la conception des systèmes. Sa capacité à détecter, localiser et diagnostiquer les événements indésirables et à y réagir est un enjeu crucial. La mise en place de cet outil ne peut être réalisée sans passer par les étapes de modélisation, simulation, essais et analyses.
Le but de ce travail a été de développer différents outils d’analyse et de conception, ainsi que les méthodologies associées. Pour permettre d’atteindre cet objectif, les points essentiels ont porté sur la modélisation du système de puissance embarqué et l’analyse des signaux pertinents issus de ce système.
L’approche système nécessite de mettre au point des modèles adaptés à la synthèse du système embarqué et représentatif des imperfections des différents éléments. Les imperfections électriques et thermiques de l’onduleur contribuent à la diminution des performances et doivent être considérées, ou tout du moins quantifiées pour assurer une démarche efficace dans l’analyse du fonctionnement d’un tel système. La conception d’un système de puissance ne peut se faire sans des outils de simulation utilisant des modèles réalistes de composants actifs.
La première étape a donc été d’établir et de valider le modèle d’un onduleur de tension triphasé, à partir de modèle de comportement de composants à semi conducteur IGBT avec diode en antiparallèle, en vue de sa surveillance. Celui-ci nécessite la connaissance des caractéristiques statiques et dynamiques et des paramètres de commutation.
Le modèle développé a permis de prendre en considération les non-linéarités des composants semi-conducteurs. Ces non-linéarités sont liées aux commutations, aux chutes de tension à l’état passant, aux courants inverses dans les diodes et aux temps morts entre les commandes des différents interrupteurs.
En outre, l’obtention du modèle réaliste passe par une étape importante d’identification des paramètres, soit à partir des mesures, soit à partir des données du fabricant.
La seconde étape abordée est celle des phénomènes d’échauffement dans les composants à semi-conducteurs. En effet, les simulations électrothermiques sont essentielles pour la conception et l’analyse correcte des composants du système électronique de puissance. Parmi l’ensemble des modèles thermiques, notre choix est porté sur un modèle en T pour représenter la structure thermique du composant discret de puissance en tenant compte de l’encapsulation.
L’intégration du modèle thermique au modèle de l’IGBT ainsi que certains paramètres à dépendance thermique permettent l’estimation de la température de jonction ainsi que la prise en compte des effets d’échauffement dans le composant.

La validité du modèle a été vérifiée sur un banc expérimental. Ce banc comprend une source de tension continue variable, un onduleur triphasé, une machine asynchrone et un système de commande à base d’un ordinateur personnel équipé d’une carte DSP compatible avec Matlab/Sumilink.

La dernière partie de ce rapport a été consacrée à l’analyse des signaux en vue de la surveillance du système embarqué. La fonction de la surveillance est de connaître et d’indiquer le plus rapidement possible avec le maximum de certitude, les anomalies de comportement (ou défaillance) à partir des informations disponibles sur le système (mesures, modèles, données de conception…). Un algorithme de surveillance a été utilisé basé sur les techniques de traitement de signal, et plus particulièrement à la décomposition en Ondelettes. En effet, lorsque le défaut se manifeste par une singularité dans le signal mesuré, sa décomposition en Ondelettes permet non seulement de détecter cette modification, mais également de déterminer l’instant d’apparition de cette perturbation.

Le problème qui se pose pour le traitement par la technique des Ondelettes est le choix du type d’Ondelette appliqué à l’analyse des signaux de sortie ainsi que le choix du niveau de décomposition convenable qui permet une perte d’information minimale (filtrage). Dans ce travail, nous avons choisi, comme fonction d’analyse, l’Ondelette de Daubechies dont l’allure est assez proche du signal à analyser. La capacité de la transformée en Ondelettes, à mettre en évidence des singularités dans un signal est une propriété fort bien connue. L’apparition d’une singularité pourra être détectée par la modification de l’amplitude des coefficients d’Ondelettes au travers différents niveaux. Un seuillage approprié permettra de détecter les modifications du comportement du signal. Pour la détection et la localisation nous avons opté pour la méthode des énergies extraites à partir des coefficients. Les coefficients de détails et d’approximation permettent de caractériser chaque niveau d'extraction par une énergie.

L’organisation générale de la fonction surveillance introduite au chapitre I est basée sur les trois grandes fonctions « voir » « comprendre » et « agir ». La fonction de perception s’appuie sur les données acquises à partir du système à surveiller et transmet à l’opérateur des informations plus ou moins élaborées. Dans ce travail, nous nous sommes focalisés sur les composantes « voir » et « comprendre ». Nous nous intéressons donc à la détection, la localisation et au diagnostic d’événements ou d’évolution imprévus.
Nous excluons de notre propos, dans un premier temps, la composante « agir » de la surveillance qui conduit à la reconfiguration des lois de commande, la réparation ou la mise en œuvre de stratégie de maintenance. Des études de cas de défaillances sont rendues possibles grâce à cet outil afin d'alimenter une base de connaissance que nous projetons de construire. D'ors et déjà, nous avons établi trois caractérisations qui constituent les premiers éléments de cette base.

Une prochaine étape qui devra être abordée est la mise en place d'un système expert. Cependant, un travail approfondi doit être mené sur les études de défaillances d'une manière exhaustive. Le but est de réaliser un prototype d'aide à la surveillance qui prend en compte le système de puissance complet avec toutes les contraintes et la complexité que cela suppose.

Perspectives

Nos perspectives à court terme sont les suivantes :

Concernant la simulation, il faut signaler que certains points restent perfectibles notamment pour améliorer les temps de simulation. Nous serons amené à travailler avec les méthodes d’intégration à pas fixe utilisant les systèmes discrétisés. Alors que les systèmes continus sont plus précis, les simulations par les méthodes discrètes sont plus rapides.

A moyen terme, nous projetons à l’implémentation d’un système de surveillance en temps réel avec intégration d’un système d’aide à la décision. La démarche à considérer est :

- de disposer d'une base possédant des connaissances résumant les causes des modes de défaillances dans le convertisseur de puissance notamment les interrupteurs de puissance (le court-circuit, surcharge, pic de surtension).

- de construire un guide détaillé (charte d'analyse) qui sera utilisé pour aider à l'investigation de la défaillance dans le système lorsque l'utilisateur se trouve incapable de déterminer la cause directement dans la base principale. Cette charte d'analyse considère notamment les excès de température et le cyclage thermique.

Ces connaissances serviront pour l'élaboration d'un outil d'aide à la décision voire de l'auto décision (auto surveillance, autodiagnostic, stratégie de maintenance). En effet, la prise de décision devrait s'effectuer par collaboration entre le système de surveillance et le système expert.

[PSB 94] User guide Power System Blockset, Mathworks 94.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
Publications liées au travail de thèse

[1] "Etude des régimes dégradés dans les systèmes électroniques de puissance embarqués dans un véhicule électrique"

[2] "Simulation method of analysing degraded modes in the embarked power electronic system in the electric vehicle"
The International Conference On Industrial Electronics, Technology And Automation IET2001.

[3] "IGBT Modeling Based on State graph representation"

[4] "Utilisation des graphes d'états dans la modélisation des composants de puissance"
7th International Conference on Modeling and Simulation of Electric Machines, Converters and Systems (ELECTRIMACS 2002), Montréal-Canada, CD.

[5] "IGBT ADVANCED MODEL USED ON DEGRADED MODE ANALYSIS"

[9] "ANALYSIS AND IDENTIFICATION OF EMBEDDED POWER SYSTEM FAULTS USING WAVELET TRANSFORM"

Avec deux articles soumis au Journal Canadien de Génie Electrique et aux Annales Maghrébines de l’ENIT.
ANNEXES
ANNEXE 1 : Revue sur les différents Modèles d’ IGBT

<table>
<thead>
<tr>
<th>Auteur(s) / papier(s)</th>
<th>Année</th>
<th>Type</th>
<th>Comp lexité</th>
<th>Commentaire</th>
<th>Simulateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuo et al.</td>
<td>1985, 1986</td>
<td>Math.</td>
<td>4</td>
<td>tension statique ((I_f)) est approximée par un modèle unidimensionnel, le taux de décroissance du courant de trainage est calculé.</td>
<td></td>
</tr>
<tr>
<td>Hefner</td>
<td>1988-1990</td>
<td>Math.</td>
<td>4</td>
<td>Modèle unidimensionnel pour les caractéristiques statiques et unidimensionnelles, bonne précision en transitoire.</td>
<td>Saber, PSice, etc.</td>
</tr>
<tr>
<td>Fossum et al.</td>
<td>1988</td>
<td>Math.</td>
<td>3</td>
<td>pour LIGBT, modèle faible puissance.</td>
<td>Spice</td>
</tr>
<tr>
<td>Shen et chow</td>
<td>1991, 1993</td>
<td>S-Math.</td>
<td>2</td>
<td>Une combinaison simple des modèles BJT et MOSFET de Spice avec une approche piece-wise pour les capacités non linéaires ((C_{gs}, C_{gd}))</td>
<td>Spice</td>
</tr>
<tr>
<td>Kraus et Hoffmann</td>
<td>1993</td>
<td>Math.</td>
<td>4</td>
<td>résolution bidimensionnelle des équations des porteurs statique, le comportement transitoire des porteurs, pour les NPT-IGBT seulement, une durée de vie dans la base est supposée infinie.</td>
<td>Saber</td>
</tr>
<tr>
<td>Fatemizadeh et al.</td>
<td>1993, 1996</td>
<td>Math.</td>
<td>5</td>
<td>Expression complexe pour DC caractéristiques, la dynamique des porteurs est approximée par la méthode de Galerkin</td>
<td>PSpice</td>
</tr>
<tr>
<td>Tzou et Hsu</td>
<td>1993</td>
<td>Comp.</td>
<td>2</td>
<td>La méthode « curve-fitting » est utilisée pour comportement non linéaire.</td>
<td>Spice</td>
</tr>
<tr>
<td>Metzner</td>
<td>1993, 1994</td>
<td>S-Num.</td>
<td>4</td>
<td>Discretisation de la région de la base pour l’obtention d’un comportement précis de porteurs.</td>
<td>Saber</td>
</tr>
<tr>
<td>Kvien et al.</td>
<td>1993</td>
<td>S-Math.</td>
<td>2</td>
<td>Non explicite, incomplet</td>
<td>Krean</td>
</tr>
<tr>
<td>Hefner et Blackburn</td>
<td>1993</td>
<td>Math.</td>
<td>4</td>
<td>Comportement électro-thermique dynamique est inclus</td>
<td>Saber</td>
</tr>
<tr>
<td>Clement et Dapkus</td>
<td>1993</td>
<td>Comp.</td>
<td>1</td>
<td>Méthode « curve-fitting » est utilisée uniquement pour calculer les pertes en commutation. le comportement statique et dynamique n’est pas pris en compte</td>
<td></td>
</tr>
<tr>
<td>Kim et al.</td>
<td>1993</td>
<td>S-Math.</td>
<td>2</td>
<td>Simple combinaison des modèles du BJT et du MOSFET de Spice, la capacité (C_{gd}) est approximée polynomiallement.</td>
<td></td>
</tr>
<tr>
<td>Auteur(s)</td>
<td>Année</td>
<td>Type</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>-----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andersson et al.</td>
<td>1993</td>
<td>S-Math.</td>
<td>3 combine le BJT et les modèles modifiés de Spice, la capacité C_{gd} et C_{ds} ont été modélisés hypoboliquement, mais les résultats en transitoire ne sont pas fournis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al.</td>
<td>1993</td>
<td>Math.</td>
<td>3 La distribution linéaire des porteurs est considérée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hefner</td>
<td>1993</td>
<td>Math.</td>
<td>4 Extension de son modèle au PT-IGBT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuo et Chiang</td>
<td>1994</td>
<td>Math.</td>
<td>4 Dédié pour les transitoires pendant la fermeture uniquement, modèle incomplet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goebel</td>
<td>1994</td>
<td>S-Num.</td>
<td>5 Combine les méthodes numériques unidimensionnelles et analytiques, inconvenient difficile à implémenter dans un simulateur normal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuzmin et al.</td>
<td>1994</td>
<td>Math.</td>
<td>4 Analyse du PT-IGBT, modéliser par des résistances différentielles négatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kovac et al.</td>
<td>1994</td>
<td>Comp.</td>
<td>2 Méthode « piece-wise » pour la modélisation de C_{gd}.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Besbes</td>
<td>1995</td>
<td>Math.</td>
<td>4 Utilisation de la méthode de bond graph, similaire à [36].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanik et al.</td>
<td>1995</td>
<td>Math.</td>
<td>4 les équations du modèle d'Hefner sont réutilisées, le modèle de la diode antiparallèle est inclus.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mihalic et al.</td>
<td>1995</td>
<td>S-Math.</td>
<td>3 Modèle de MOSFET modifié utilisé pour les caractéristiques statiques, capacité non linéaire modélisé par « piece-wise ».</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alonso et al.</td>
<td>1995</td>
<td>S-Math.</td>
<td>3 Modèle simple du comportement en court-circuit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wong</td>
<td>1995,</td>
<td>Comp.</td>
<td>1 Méthode « curve-fitting » pour les caractéristiques statique et dynamique, pour l’estimation des pertes électromagnétiques, modèle non adéquat pour la simulation comportementale du composant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udrea et al.</td>
<td>1995,</td>
<td>Math.</td>
<td>4 L’effet de la diode PiN sur les caractéristiques statiques du TIGBT est modélisé par une combinaison de PIN-BJT en série avec le MOSFET.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feiler et al.</td>
<td>1995</td>
<td>Math.</td>
<td>5 La distribution bidimensionnelle des porteurs à l’état passant est calculée pour le DIGBT, modèle très compliqué pour la simulation des circuits, adéquat pour les fabricants de composant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annexe</td>
<td>Auteur(s)</td>
<td>Année</td>
<td>Environnement d'analyse</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
<td>-------------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Kawaguchi et al.</td>
<td>1995</td>
<td>S-Math.</td>
<td>Dédicé pour LIGBT</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hsu et Ngo</td>
<td>1996</td>
<td>Comp.</td>
<td>La méthode d’Hammerstein est utilisée, la capacité non linéaire C_{gd} est modélisée.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Musumeci et al.</td>
<td>1996</td>
<td>S-Math.</td>
<td>Modèle avec sous circuit pour le PT-IGBT, une source de courant est utilisée pour la modélisation de la dépendance tension courant de traînage.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Blaabjerg et al.</td>
<td>1996</td>
<td>Comp.</td>
<td>Estimation des pertes par approximation des fonctions de puissance.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sheng et al.</td>
<td>1996</td>
<td>S-Math.</td>
<td>Structure simple avec un BJT, MOSFET et une source de courant contrôlé pour la capacité C_{gd}.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monti</td>
<td>1996</td>
<td>Comp.</td>
<td>Approche basée sur la logique floue, les capacités non linéaires C_{gd}, C_{gs} et C_{ds} sont modélisées par la méthode « piece-wise ».</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sheng et al.</td>
<td>1997</td>
<td>Math.</td>
<td>Effet bidimensionnel sur les caractéristiques statiques est modélisé analytiquement pour le D-IGBT.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Strollo</td>
<td>1997</td>
<td>Math.</td>
<td>L’équation de transport des porteurs est implémentée par la transformation de Laplace.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Napoli et al.</td>
<td>1997</td>
<td>Math.</td>
<td>La distribution bidimensionnelle des porteurs à l’état passant est modélisée analytiquement pour le DIGBT, durée de vie finie des porteurs est considérée, convenable pour les fabricants de composant.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigg et al.</td>
<td>1997</td>
<td>Math.</td>
<td>Modèle complexe pour une distribution de porteur dynamique et un comportement électrothermique dynamique.</td>
<td></td>
</tr>
</tbody>
</table>

Tab.1 Revue sur les différents modèles d’IGBT d’après [SHEN 00]
ANNEXE 2 : Revue sur les différents Modèles de diodes

<table>
<thead>
<tr>
<th>Auteur(s) / papier(s)</th>
<th>Année</th>
<th>Type de diode</th>
<th>Nbre de param.</th>
<th>commentaire</th>
<th>Simulateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modèles analytiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liang</td>
<td>1990</td>
<td>p+n/n+</td>
<td>7</td>
<td>Transitoire, condition rampe $I_m < I_f$</td>
<td>Pspice</td>
</tr>
<tr>
<td>Lauritzem</td>
<td>1991</td>
<td>p-i-n</td>
<td>5</td>
<td>Transitoire, uniquement recouvrement inverse.</td>
<td>Saber</td>
</tr>
<tr>
<td>Jin</td>
<td>1991</td>
<td>p-i-n, p-v-n</td>
<td>4</td>
<td>Transitoire, uniquement recouvrement direct.</td>
<td>Saber</td>
</tr>
<tr>
<td>Kraus</td>
<td>1992</td>
<td>p-i-n, p-v-n</td>
<td>17</td>
<td>Transitoire, DC, effet d’auto échauffement</td>
<td>Saber</td>
</tr>
<tr>
<td>Ma</td>
<td>1993</td>
<td>p-i-n</td>
<td>9</td>
<td>Transitoire, DC, condition rampe $I_m < I_f$</td>
<td>Saber</td>
</tr>
<tr>
<td>Ma</td>
<td>1993</td>
<td>p-i-n, p-v-n</td>
<td>6</td>
<td>Transitoire, DC, condition rampe $I_m < I_f$</td>
<td>Saber</td>
</tr>
<tr>
<td>Yang</td>
<td>1994</td>
<td>p+n/n+</td>
<td>7</td>
<td>Transitoire, Uniquement recouvrement inverse.</td>
<td>Saber</td>
</tr>
<tr>
<td>Tseng</td>
<td>1994</td>
<td>p-i-n, p-v-n</td>
<td>6</td>
<td>Transitoire, DC,</td>
<td>Pspice, Saber</td>
</tr>
<tr>
<td>Analogy</td>
<td>1995</td>
<td>p-i-n, p-v-n</td>
<td>59</td>
<td>Transitoire, DC, effet d’auto échauffement</td>
<td>Saber</td>
</tr>
<tr>
<td>Strollo</td>
<td>1996</td>
<td>p-i-n, p-v-n</td>
<td>20</td>
<td>Transitoire, DC,</td>
<td>Pspice</td>
</tr>
<tr>
<td>Ma</td>
<td>1997</td>
<td>p-i-n, p-v-n</td>
<td>8</td>
<td>Transitoire, DC,</td>
<td>Saber</td>
</tr>
<tr>
<td>Tseng</td>
<td>1997</td>
<td>p-i-n, p-v-n</td>
<td>8</td>
<td>Transitoire,</td>
<td>Pspice, Saber</td>
</tr>
<tr>
<td>Modèles numériques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volger</td>
<td>1992</td>
<td>p-i-n, p-v-n</td>
<td>26</td>
<td>Transitoire, DC,</td>
<td>Saber</td>
</tr>
<tr>
<td>Winternheimer</td>
<td>1992</td>
<td>p+n/n+</td>
<td>6</td>
<td>Transitoire,</td>
<td></td>
</tr>
<tr>
<td>Goebel</td>
<td>1992</td>
<td>p-i-n, p-v-n</td>
<td>11</td>
<td>Transitoire, DC,</td>
<td>Saber</td>
</tr>
<tr>
<td>Modèle empirique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bertha</td>
<td>1993</td>
<td>p+n/n+, p-i-n, p-v-n</td>
<td>18</td>
<td>Transitoire, DC,</td>
<td>Pspice,</td>
</tr>
</tbody>
</table>
ANNEXE 3 : Analyse structurelle de l’ IGBT

L’IGBT (Insulated Gate Bipolar Transistor) est un composant de puissance intégrant dans une même structure un transistor MOS et un transistor bipolaire. Leur association permet à l’IGBT d’allier les avantages de ces deux éléments en terme de bipolarité et de modulation de la conductivité. Depuis sa création, au début des années 80, les progrès technologiques apportés ont fait de l’ IGBT un composant célèbre, présent dans diverses applications notamment le véhicule électrique.

L’analyse de la structure de l’ IGBT fait apparaître, d’après la disposition des couches, une similitude avec la structure classique d’un VDMOS (Vertically Diffused MOS) excepté le substrat qui est de type P+ pour l’ IGBT. En effet, les deux dispositifs ont la même structure de grille et le contact de la source (cathode pour l’ IGBT) se fait aussi bien sur le caisson n ++ (source) que sur les puits (buffer) P, le niveau de dopage et les dimensions de la couche épitaxiée sont choisis pour supporter les fortes tensions en mode de blocage direct. La présence de deux niveaux de dopage dans le puits P a pour but d’assurer à la fois une tension de seuil raisonnable (P faible au niveau du canal) et une faible résistivité afin d’éviter le déclenchement du bipolaire n ++PN− parasite (P fortement dopé dans le volume) monté en thyristor avec le transistor PNP Fig.1.

Dans les IGBTs modernes cette résistance R_{p}, qui correspond au puits P situé en dessous de la couche n ++, est rendue suffisamment faible pour inhiber le déclenchement du thyristor. La présence du substrat P+ permet l’injection de porteurs minoritaires dans la couche épitaxiée, ce qui induit une modulation de sa conductivité et par conséquent réduit la résistance de la
couche épitaxiée R_n, Fig.2. Sa valeur est rendue très faible comparée à celle du VDMOS de même calibre. R_n ne constitue plus qu’une résistance d’accès à la base du transistor PNP.

Fig.2 Circuit équivalent de l’IGBT

Compte tenu des simplifications technologiques précitées, le schéma équivalent d’un IGBT se réduit alors à un transistor bipolaire commandé par un MOSFET dans une configuration « pseudo-darlington » Fig.3.

Fig 3 Schéma électrique équivalent simplifié

Différentes technologies résultent en différentes structures et différents comportements. On distingue deux concepts pour l’IGBT à structure verticale PT et NPT. Les PT IGBT existent dans les valeurs de tensions suivantes 500v, 600v, 1,2kv et 2,5 kv et plus tandis que les NPT IGBT existent 600v, 1kv, 1,2kv et 2,5 kv.

La structure d’IGBT (PT ou NPT) n’est pas considérée dans les modèles comportementaux. Deux structures existent pour la grille : structure planar (DIGBT ou DMOS IGBT) et la structure trench IGBT.
ANNEXE 4 : Présentation du logiciel de simulation des structures

L’objet de la simulation des structures en électronique de puissance est de prévoir, avec une précision suffisante, les phénomènes susceptibles d’apparaître pendant les phases de commutation des composants à semi-conducteur. Cependant, les études menées de façon globale s’intéressent uniquement aux interrupteurs (composants actifs) dans son environnement système et montrent que ceux-ci sont représentés généralement soit par des résistances binaires \((R_{on}/R_{off})\) pour les tous premiers modèles, soit par des composants parfaits (court-circuit, circuit ouvert) ou quasi parfaits. Ces deux types de représentation sont dictés respectivement par les deux méthodes à topologie fixe et à topologie variable.

La méthode à topologie fixe présente une simplicité de mise en œuvre sur le plan de l’analyse des circuits mais elle donne lieu à un calcul délicat, pour certaines valeurs des résistances binaires, des équations d’état.

La méthode à topologie variable : les principes de celle-ci reviennent aux années 70. Elle a fait l’objet de nombreuses publications, mais elle n’a jamais connu de succès à cause des difficultés liées à l’élimination des semi conducteurs du circuit. C’est à partir des années 90-92 [MATT 89], [MATT 94], certains travaux de recherche ont permis de présenter une méthodologie de mise en équation entièrement automatique s’appuyant sur l’analyse topologique du circuit. Ainsi, c’est au tour de cette méthodologie que nous allons essayer d’établir des modèles comportementaux des composants actifs.

I- Méthode de simulation à topologie fixe

I-1 Principe de la méthode

Dans la simulation à topologie fixe, les semi-conducteurs sont caractérisés par des résistances binaires \(R_{on}/R_{off}\) selon leurs états. L’exemple de simulation d’un hacheur montre ceci sur la figure 1.

![Fig. 1 Circuit équivalent en topologie fixe](image)
Au cours de cette simulation le graphe du circuit est fixe amenant à un système d’équation unique, seuls quelques coefficients changent en fonction des états des semi-conducteurs (commutation). Le système d’équations ne change qu’après une nouvelle structure.

I-2 Avantages et inconvénients

Malgré son avantage appréciable de simplicité, cette méthode peut entraîner des écarts par rapport à la réalité ou des difficultés d’interprétation. Cependant, pour qu’il y ait une bonne stabilité des méthodes d’intégration et une bonne précision sur les calculs matriciels il faut que le rapport \(\frac{R_{on}}{R_{off}} \) ne soit pas élevé. Mais une bonne représentation des états bloqué et passant des semi-conducteurs justifierait un rapport élevé [MATT 94]. De plus, cette méthode doit tenir compte à tout instant du circuit complet alors que très souvent seule une partie de ce circuit est active et par la suite des calculs inutiles pourraient être évités.

II- Méthode de simulation à topologie variable

II-1 Principe de la méthode

Celle-ci se base sur la représentation des semi-conducteurs par des circuits ouverts ou par des courts-circuits (interrupteurs parfaits). Durant chaque phase de fonctionnement de la structure étudiée nous pouvons éliminer les interrupteurs en fusionnant les noeuds du circuit relatif aux interrupteurs fermés et en supprimant les branches formées par ceux ouverts. Après élimination des semi-conducteurs un certain nombre de branches du circuit se trouvent en l’air ou court-circuitées. Il est donc possible de supprimer et de simplifier ainsi le circuit sur lequel seront effectués les calculs (circuit réduit). Après cette étape de simplification topologique le circuit se trouve être réduit, il s’en suit une la réduction du système d’équations [MATT 94]. La figure.2 décrit l’évolution de la topologie d’un circuit hacheur.

![Diagramme de topologie variable](image)

Fig.2 Schéma équivalent en topologie variable
II-2 Avantages et inconvénients

L’avantage appréciable de cette méthode réside dans le fait que tous les composants inutiles pendant une phase de fonctionnement, aussi bien les semi-conducteurs que les composants passifs, sont éliminés de la simulation. Il en résulte, une élimination des constantes de temps « parasites » (erreurs dynamiques), ainsi la méthode d’intégration et le pas de calcul peuvent être choisie avec une grande souplesse. Bien entendu, le volume global de calcul entre chaque commutation peut être notablement diminué, le graphe réduit peut s’avérer extrêmement simple. L’éventuelle élimination des condensateurs ou d’inductances entraîne, de plus, la réduction de l’ordre du système d’équations d’état. L’ensemble conduit à une réduction notable des durées de simulation.

Toute fois cette méthode est peu employée à cause de la difficulté de récupération des variables tensions et courants aux bornes des semi-conducteurs. Ce problème est résolu mathématiquement [MATT 89]. De plus certaines caractéristiques des semi-conducteurs tel que la chute de tension aux bornes des composants et les courants de fuites ne peuvent être représentées. La simulation de ces imperfections, si nécessaire, est résolue par l’utilisation des éléments supplémentaires (résistance en série ou en parallèle, source de tension ou de courant…).

III- Mise en œuvre de la topologie variable dans le logiciel Matlab

III-1 Principe de simulation des interrupteurs

Le circuit est construit à partir de blocs électriques de power_lib. A chaque fois qu’on lance la simulation un mécanisme d’initialisation est appelé.

Ce processus d’initialisation calcule le modèle vecteur d’état du circuit électrique et construit le système équivalent simulable par Simulink. En effet, la fonction power2sys, faisant partie du processus, reçoit le modèle vecteur d’état et construit le modèle de Simulink du circuit.

Si le modèle d’interrupteur contient une inductance série, cas de la diode ou l’IGBT, l’interrupteur est simulé comme une source de courant commandée par une tension à travers ses terminaux.

Le bloc non linéaire, avec une entrée en tension et une sortie en courant, est ainsi connecté en boucle de retour sur le circuit linéaire comme le montre la figure 3.
Cependant, si l'interrupteur est purement résistif le modèle d'interrupteur est considéré comme partie intégrante du circuit non linéaire. Le modèle vecteur d’état du circuit, incluant le circuit ouvert et le circuit fermé de l’interrupteur, est alors recalculé à chaque commutation produisant un changement dans la topologie du circuit. Cette méthode est souvent utilisée pour l’interrupteur idéal.

D’une manière générale, l’utilisation d’une inductance interne dans le modèle interrupteur aide à la commutation. En considérant, par exemple le pont redresseur à IGBT alimenté par une source infinie (impédance zéro), la simulation du circuit sans l’inductance interne ($L_{on}=0$) résulte en des pointes de courant. En effet, durant la commutation les deux IGBT connectés à la même borne positive ou négative du pont sont en conduction pour une courte période de temps, appliquant ainsi un court-circuit sur la source.

Durant la commutation, le courant est limité seulement par la résistance interne. Ces courts-circuits peuvent être évités en utilisant une faible inductance L_{on} de l’ordre du micro-Henry dans le modèle d’interrupteur. Ainsi la commutation n’est plus instantanée. Le temps de commutation dépendra de la valeur de L_{on} et du courant direct.

III-2 Organigramme général du programme Matlab

Lorsque la fonction `power2sys` est appelée par le processus d’initialisation, elle effectue les étapes suivantes Fig.4 :

- classe tous les blocs contenus dans le système en deux catégories : les blocs de Simulink et les blocs Sim Power System (SPS). Ensuite, elle reçoit les paramètres des blocs et évalue la topologie du circuit. Le circuit SPS est
Annexes

composé d’un bloc linéaire et un bloc non linéaire. De plus à chaque nœud du circuit électrique lui est attribué automatiquement un numéro.

- Une fois la topologie est établie le modèle du vecteur d’état de la partie linéaire du circuit est calculé par la fonction circ2ss. Tous les calculs des régimes permanents ainsi que les initialisations sont effectués à ce stade.

- Pour le choix du mode discret, le vecteur d’état est calculé à partir du modèle continu du vecteur d’état utilisant la méthode de Tustin.

- Power2sys construit le modèle Simulink du circuit et l’enregistre dans l’un des blocs de mesure. D’où la nécessité d’utiliser au moins un bloc de mesure (bloc de mesure de courant, bloc de mesure de tension ou un bloc multimètre). L’interconnexion entre le circuit équivalent et les blocs de mesure est réalisée par des liens cachés utilisant les blocs « goto » et « from ».
Fig. 4 Organigramme de Sim Power System
ANNEXE 5 : Modélisation de la machine asynchrone

Plusieurs modèles de machine asynchrone ont été proposés dans la littérature. Ils sont généralement fournis dans les axes ‘dq’ considérant une alimentation sinusoïdale équilibrée. Le modèle proposé par la bibliothèque de Sim Power Sim est un exemple du modèle classique de park de la machine asynchrone.

Toutefois, ce modèle ‘dq’ conventionnel de la machine asynchrone ne peut être utilisé pour l’étude des variateurs de vitesse en régimes transitoires car il est établi en supposant un entrefer constant, une répartition spatiale sinusoïdale du flux dans l’entrefer, une proportionnalité des flux au courant et un système d’alimentation triphasé équilibré.

Pour l’étude des régimes de fonctionnement dégradés nous proposons de modéliser la machine asynchrone en utilisant les vecteurs complexes courants, tensions et flux. Ce modèle est bien supérieur au modèle ‘dq’ conventionnel car il peut simuler, pour différents scénarios de défauts dans la machine ou l’onduleur, les modes de fonctionnement anormal.

On définit les vecteurs complexes suivants :

- Vecteur complexe courant,
 \[i_r = \frac{2}{3}(i_{as} + a \cdot i_{bs} + a^2 \cdot i_{cs}) = \frac{2}{3} \begin{bmatrix} i_{as} \\ i_{bs} \\ i_{cs} \end{bmatrix} \]

- Vecteur complexe tension,
 \[v_r = \frac{2}{3}(v_{as} + a \cdot v_{bs} + a^2 \cdot v_{cs}) = \frac{2}{3} \begin{bmatrix} v_{as} \\ v_{bs} \\ v_{cs} \end{bmatrix} \]

- Vecteur complexe flux,
 \[\phi_r = \frac{2}{3}(\phi_{as} + a \cdot \phi_{bs} + a^2 \cdot \phi_{cs}) = \frac{2}{3} \begin{bmatrix} \phi_{as} \\ \phi_{bs} \\ \phi_{cs} \end{bmatrix} \]
\[
\phi_r = \frac{2}{3}(\phi_{ar} + a \cdot \phi_{br} + a^2 \cdot \phi_{cr}) = \frac{2}{3} \begin{bmatrix} 1 & a & a^2 \end{bmatrix} \begin{bmatrix} \phi_{ar} \\ \phi_{br} \\ \phi_{cr} \end{bmatrix}
\]
avec \(a = e^{j(\frac{2\pi}{3})} \).

I- Équations électrocinétiques

Les équations matricielles suivantes expriment les tensions sur les différents enroulements :

\[
[v_s] = R_s[i_s] + \frac{d[\phi_s]}{dt} \quad \text{et} \quad [v_r] = R_r[i_r] + \frac{d[\phi_r]}{dt}
\]
peuvent être ramenées aux équations complexes :

\[
v_s = R_s i_s + \frac{d\phi_s}{dt} \quad \text{et} \quad v_r = R_r i_r + \frac{d\phi_r}{dt}
\]
Les flux complexes rotorique et statorique peuvent s’écrire :

\[
\phi_s = L_s \cdot i_s + M \cdot e^{j\theta} i_r \quad \phi_r = L_r \cdot i_r + M \cdot e^{-j\theta} i_s
\]
ce qui donne sous forme matricielle:

\[
\begin{bmatrix} \phi_s \\ \phi_r \end{bmatrix} = \begin{bmatrix} L_s & M \cdot e^{j\theta} \\ M \cdot e^{-j\theta} & L_r \end{bmatrix} \begin{bmatrix} i_s \\ i_r \end{bmatrix}
\]

où \(L_s, L_r \) et \(M \) représentent les inductances cycliques définies par les expressions suivantes :

\[
L_s = L_{ps} - M_s \quad L_r = L_{pr} - M_r \quad M = \frac{3}{2} M_0
\]

Le couple électromagnétique peut être exprimer par :

\[
C_e = \frac{3}{4} p s j \left(\phi_s^* i_r - \phi_r^* i_s \right)
\]

La vitesse

Elle est solution de l’équation fondamentale de la dynamique

\[
J \frac{d\Omega}{dt} = C_e - C_r
\]
avec \(J \) moment d’inertie \(C_r \) couple résistant et le frottement est négligé.

Le coefficient de dispersion de Blondel est défini par la relation \(\sigma = 1 - \frac{M^2}{L_r L_s} \).

Ces équations ont été implantées dans sous Simulink/Matlab permettant d’effectuer différentes simulations Fig.1.
Annexes

II- Identification expérimentale des paramètres de la machine

L’objectif de cette partie concerne la caractérisation des paramètres de la machine asynchrone utilisée dans les essais expérimentaux menés sur le système de puissance. Ces essais ont été réalisés au laboratoire L2EP de l’Ecole Centrale de Lille avec une machine asynchrone « LEROY SOMER » de 1.8 kW dont la plaque signalétique est la suivante :

\[\text{Cos } \Phi = 0.76, \]
\[P_n = 1.8 \text{ Kw}, \]
\[V_n = 1460 \text{ tr/mn}, \]
\[\Delta V = 220 \text{ V} \]
\[\Delta I = 7.8 A \]
\[\lambda V = 380 \text{ V}, \]
\[\lambda I = 4.5 A. \]

En régime permanent et sous une alimentation triphasée sinusoïdale, la machine asynchrone peut être représentée par le schéma ci-dessous Fig.2.
Des essais à vide ont été effectués sur la machine asynchrone afin de déterminer la résistance statorique R_s, la résistance magnétique R_μ (mutuelle résistance), l'inductance magnétique L_μ (mutuelle inductance) et l'inductance statorique L_s.

La machine asynchrone est couplée en étoile. On utilise la méthode de deux wattmètres pour mesurer la puissance active absorbée par la machine asynchrone. Une machine à courant continu MCC est accouplée à la MAS. À vide, lorsque la MCC n’applique aucun couple extérieur, la vitesse de la MAS est proche du synchronisme qui correspond à un glissement quasi nul.

La figure 3 montre le schéma de câblage pour la mesure de la résistance des enroulements statoriques.

Pour la détermination de la résistance statorique R_s, on fixe le courant à sa valeur nominale $I_0=4.5A$ et on prélève la tension correspondante. Nous déduisons alors $Rs = 3.02\Omega$.

Ensuite, on alimente progressivement la MAS sous une tension de 380 V. La puissance active à vide P, la puissance réactive à vide Q, le courant à vide I_0 et la vitesse Ω sont mesurés.
Annexes

\[P = P_\alpha + P_\beta = P_j + P_{\text{fer}} + P_{\text{mec}} \] \hspace{1cm} (1)

\(P_\alpha \) et \(P_\beta \) sont les puissances mesurées par la méthode des deux wattmètres.

\(P_{\text{fer}} \) : les pertes fer,

\(P_j \) : perte joule dans le stator,

\(P_{\text{mec}} \) : perte mécanique.

\[Q = Q_r + Q_m \] \hspace{1cm} (2)

\(Q_m \) : puissance magnétisante,

\(Q_r \) : puissance réactive due aux pertes réactives.

\[P_{\text{phase}} = P_3 = R_\mu I^2 + \frac{V^2}{X_\mu} \] \hspace{1cm} (3)

\(R_\mu \) : Mutuelle résistance,

\(L_\mu \) : Mutuelle inductance.

\[Q = \sqrt{3}(P_\alpha - P_\beta) \] \hspace{1cm} (4)

\[Q_{\text{phase}} = L\mu I^2 + \frac{V^2}{X_\mu} = Q / 3 \] \hspace{1cm} (5)

D’une manière générale l’inductance statorique \(L_s \approx \frac{L_\mu}{100} \).

Le courant à vide représente 50% du courant nominal.

\[Q_{\text{phase}} = \frac{L_\mu \omega}{100} I^2 + \frac{V^2}{X_\mu} \] \hspace{1cm} (6)

\[Q_{\text{phase}} = \frac{X_\mu}{100} I^2 + \frac{V^2}{X_\mu} \] \hspace{1cm} (7)

Le rendement est exprimé par :

\[\eta = \frac{P_u}{P_a} = \frac{P_u}{P_u + \sum P_{\text{fer}}} = \frac{P_u}{P_u + P_j + P_{\text{mec}}} = \frac{P_u}{P_u + 2P_{\text{fer}}} \approx 0.85 \] \hspace{1cm} (8)

\[P_{\text{fer}} = \frac{1}{2} \left[\frac{P_u}{0.85} - P_u \right] = 154.287W \] \hspace{1cm} (9)

Calcul de \(R_\mu, L_\mu, R_s, L_s \)

\[P_{\text{phase}} = \frac{P_\alpha + P_\beta}{3} = \frac{780 - 463}{3} = \frac{317}{3} = 105.66W \]

D’après l’équation (3)
Annexes

\[
R_\mu = \frac{220^2}{105.66 - 3.02(2.3)^2} = 539.671\,\Omega \text{ d'où } R_\mu = 539.671\,\Omega \\
\]

\[
Q_{\text{phase}} = \frac{\sqrt{3}(780 + 463)}{3} = 2152.94 \, \text{VAR} = 717\,\text{VAR} \\
\]

\[
Q_{\text{phase}} = \frac{X_\mu I^2}{100} + \frac{220^2}{X_\mu} \text{ d'où } X_\mu = 67.86\,\Omega \\
\]

Essai à rotor bloqué

Des essais à rotor bloqué ont été réalisés pour identifier les paramètres du rotor notamment la résistance rotoriqute \(R_r \) et l’inductance rotorique \(L_r \).

A rotor bloqué, le glissement est unitaire. L’impédance du circuit du rotor \((R_r/g)\) est alors très faible (c’est pourquoi on l’appelle aussi essai en court-circuit) et le courant résultant de l’application d’une tension est très important. Par conséquent, cet essai doit être mené sous une faible tension de façon à limiter le courant à une valeur inférieure ou égale au courant nominal de la MAS.

On maintient le rotor bloqué, on augmente la tension d’alimentation de la MAS jusqu’à ce que le courant statorique atteigne sa valeur nominale.

On mesure la puissance active (\(P_{cc} \)) et la puissance réactive (\(Q_{cc} \)), le courant statorique de court-circuit (\(I_{esc} \)) ainsi que la tension réduite.

La tension réduite mesurée, lors de l’essai rotor bloqué, est de 63 V.

\[
\frac{V_{cc}}{\sqrt{3} I_{cc}} = \sqrt{(R_s + R_r)^2 + (L_s \omega + L_r \omega)^2} \\
\]

Calcul de \(R_r \) et de \(L_r \)

\[
\frac{P_1 + P_2}{3} = (R_s + R_r) I_{cc}^2 \\
\]

Mesures expérimentales : \(I_{cc} = 4.5A, V_{cc} = 63V, R_s = 3.02\,\Omega \), \(P_1 = 267W, P_2 = 56W \).

D’où \(R_r = 2.29\,\Omega \)

\[
L_r \omega = \sqrt{\left(\frac{V_{cc}}{\sqrt{3} I_{cc}}\right)^2 - (R_s + R_r)^2 - L_s \omega} \\
\]

d’où \(L_r \omega = 5.4117\,\Omega \Rightarrow L_r = 7.23\,mH \)
ANNEXE 6 : Liste des symboles

\(I_{cm} \): courant maximum;
\(V_{m} \): tension maximum;
\(T_{hj} \): température de jonction;
\(E_{0} \): tension de seuil;
\(R_{0} \): résistance interne;
\(T_{f} \): temps de descente;
\(T_{r} \): temps de montée;
\(T_{tail} \): temps de traînée;

Constantes :
\(K_{r0} = 0.347 \);
\(K_{r1} = 0.083 \);
\(K_{r2} = 0.05 \);
\(K_{f0} = 0.191 \);
\(K_{f1} = -0.228 \);
\(K_{f2} = 0.474 \);
\(K_{t0} = 0.861 \);
\(K_{t1} = 0.09 \);
\(K_{t2} = 0.165 \);
Résumé

Dans le domaine de l’automobile, l’augmentation de la fiabilité passe par la détection, la localisation et l’identification des défauts. Le sujet de cette thèse consiste, en s’appuyant sur les diagnostics locaux faits au niveau des composants d’un système d’alimentation électronique d’un véhicule électrique, à définir une approche « sûreté hiérarchisée » prenant des décisions à chaque niveau de système pour conduire à des stratégies de maintenance prédictive et de fonctionnement en mode dégradé.

Une première étape dans cette démarche a consisté à développer un modèle d’interrupteur de puissance composé d’un IGBT avec une diode en antiparallèle qui tient compte des non linéarités des semi-conducteurs tel que les pertes en commutation, les caractéristiques statiques, les températures de jonction, le phénomène de recouvrement inverse et le temps mort entre les commandes des interrupteurs du même bras. Des simulations électrothermiques ont permis l’estimation des températures de jonctions ainsi que la surveillance des grandeurs mesurables tel que le courant, la tension. Un modèle de commutation de l’onduleur a été mis en œuvre à partir des modèles comportementaux de l’IGBT et de la diode de puissance. L’obtention du modèle réaliste a passé par une étape importante d’identification des paramètres statiques et dynamiques à partir des mesures et à partir des données du fabricant.

La seconde étape a consisté à valider le modèle obtenu avec ceux obtenus avec un onduleur triphasé de tension triphasé.

La dernière partie de ce travail a été consacrée à l’analyse des signaux en vue de la surveillance du système embarqué. La fonction de la surveillance est de connaître et d’indiquer le plus rapidement possible avec le maximum de certitude, les anomalies de comportement (ou défaillance) à partir des informations disponibles sur le système (mesures, modèles, données de conception…). Un algorithme de surveillance a été utilisé basé sur les techniques de traitement de signal, et plus particulièrement à la décomposition en Ondelettes de Daubechies. Ainsi l’apparition d’une singularité dans les formes d’onde est détectée par comparaison de la modification de l’amplitude des coefficients d’Ondelettes avec un seuil.

Le niveau des énergies extraites à partir des coefficients a été utilisé pour la détection et la localisation du défaut.