L2EP Logo


Recherche, Développement et Innovation en Génie Electrique


1TANG Zuqi, ZHAO Yanpu
"Residual Type a posteriori Error Estimates for 3-D Low Frequency Stable Maxwell Formulations in Both Frequency and Time Domains"
IEEE Transactions on Magnetics, 10,
In this paper, residual type a posteriori error estimates developed in our previous work for magnetostatic and eddy current problems are extended to low-frequency (LF) Maxwell problems using A/φ formulation, where both inductive and capacitive effects can be handled simultaneously. Classical low order finite element basis (LOFEB), as well as high order finite element basis (HOFEB) of edge and nodal type are adopted in numerical examples to evaluate the performance of the proposed estimators.
2YAN Shuai, TANG Zuqi, HENNERON Thomas, REN Zhuoxiang
"Structure-Preserved Reduced Order Modeling for Frequency Domain Solution of the Darwin Model with a Gauged Potential Formulation"
IEEE Transactions on Magnetics, 10,
In this work, the proper orthogonal decomposition (POD) is applied for parametric analysis in the gauged potential formulation of the Darwin model considering both capacitive and inductive effects. Due to the large contrast in material parameters, the resulted system matrix is ill-conditioned. Also, the condition number of the corresponding snapshot complex matrix is very huge. To improve the stability of the POD method, a structured-preserving strategy is considered and implemented for different unknown potentials, namely the magnetic vector potential A, the electric scalar potential φ, and the Lagrange multiplier p. Besides, a greedy algorithm is proposed to select the snapshots adaptively. Two numerical examples, including a parallel plate capacitor and a modified RLC device structure, are provided to illustrate the capability of proposed POD in model order reduction in frequency domain solvers.
3YAN Shuai, TANG Zuqi, HENNERON Thomas, REN Zhuoxiang
"Proper Generalized Decomposition for Edge Elements in Magnetostatics with Adaptive Stopping Criterion"
IEEE Transactions on Magnetics, 10,
The proper generalized decomposition (PGD) is ana priorimodel order reduction (MOR) method based on a variable-separatedexpression of the problem. Two iterative loops are needed in the PGD algorithm, namely the outer loop for enriching the reductionmodes progressively, and the inner loop for solving each mode by fixed point iterations. Setting the stopping criterion of these twoloops blindly can cause either the inaccuracy of the PGD or a waste of iterations. In this work, a special variable-separated PGDwith edge elements is proposed and implemented on a hexahedral mesh in magnetostatics. Also, an adaptive stopping criterion basedon dual formulations is applied to balance different error components, namely the discretization error, error for outer and innerloops of PGD. A numerical example is given to illustrate the proposed approach
4LI Chuanyue Li, QORIA Taoufik, COLAS Frédéric, JUN Liang, WENLONG Ming, GRUSON François, GUILLAUD Xavier
"Coupling influence on the dq impedance stability analysis for the three-phase grid-connected inverter"
MDPI Energies, 9, url,
The dq impedance stability analysis for a grid-connected current-control inverter is based
on the impedance ratio matrix. However, the coupled matrix brings the difficulties to derive its
eigenvalues for the analysis based on the General Nyquist Criterion. If the couplings are ignored for
simplification, the unacceptable errors will present in the analysis. In this paper, the influence of the
couplings on the dq impedance stability analysis is studied. For taking the couplings into account
simply, the determinant-based impedance stability analysis is used. The mechanism between the
determinant of the impedance-ratio matrix and the inverter stability is unveiled. Compared to the
eigenvalues-based analysis, only one determinant rather than two eigenvalue s-function is required
for the stability analysis. One Nyquist plot or polemap can be applied to the determinant for checking
the right-half-plane poles. The accuracy of the determinant-based stability analysis is also checked
by comparing with the state-space stability analysis method. For the stability analysis, the coupling
influence on the current control, phase-locked loop and the grid impedance are studied. The errors
can be 10% in the stability analysis if the couplings are ignored.
"LQR based MIMO-PID controller for the vector control of an underdamped harmonic oscillator"
Mechanical Systems and Signal Processing, Vol. 134, 8, url,
Modulated-Demodulated control (or vector control) allows to simultaneously impose amplitude and phase of a resonator. Moreover, the working frequency in the case of discrete-controller is substantially lower than the resonance frequency. However, the design of a such controller can be complex. In this paper, we outline a design directly in the baseband. To do so, the oscillator is modelled as a non-dimensional Multi-Input-Multi-Output system. An optimal control (Linear Quadratic Regulator) framework can then be used to design the controller. Thanks to ad hoc performances criteria, the weighting matrices are systematically specified according to the desired closed-lop time response. The methodology is validated by an experimental results on a plate actuated using piezoelectric patches.
6LA DELFA Patricio, HECQUET Michel, GILLON Frédéric
OPEN PHYSICS-ID:1895-1082, 7,
The electromagnetic noise generated by the Maxwell radial pressure is a well-known consequence. In this paper, we present an analytical tool that allows air gap spatio-temporal pressures to be obtained from the radial flux density created by surface permanent magnet synchronous machines with concentrated winding (SPMSM). This tool based on winding function, a global air-gap permeance analytical model and total magnetomotive force product, determines the analytical air-gap spatio temporal and spectral radial pressure. We will see step-by-step their impacts in generating noise process. Also two predictive methods will be presented to determine the origin of the lows radial pressure orders noise sources. The interest lies in keeping results very quickly and appropriate in order to identify the low order electromagnetic noise origin. Then through an inverse approach using an iterative loop a new winding function is proposed in order to minimize radial force low order previously identified and chosen.
7TANG Zuqi, ZHAO Yanpu, REN Zhuoxiang
"Auto-Gauging of Vector Potential by Parallel Sparse Direct Solvers–Numerical Observations"
IEEE Transactions on Magnetics, Vol. 55, N°. 6, p. 1-4, ISBN 1941-0069, 6, url,
When using magnetic vector potential (MVP)-based formulations for magnetostatic or eddy-current problems, either gauge conditions specifying the divergence of the MVP or tree gauging by eliminating redundant degrees of freedom of the MVP is usually imposed to ensure uniqueness of solutions. Explicit gauging of the MVP is not always necessary since classical iterative solvers can automatically and implicitly fix the gauge as long as the right-hand side vectors are consistent. Besides iterative solvers, implicit gauging is also observed when using state-of-the-art parallel sparse direct solvers (PSDSs), thanks to the built-in functions of handling null-spaces of either real symmetric positive semi-definite matrix systems or those complex symmetric systems from eddy-current problems. Both static and eddy-current examples are solved by PSDS to demonstrate results of local physical quantities or global quantities such as magnetic energy or joule losses. High-order edge/nodal elements are also considered in our numerical examples and it is observed that PSDS can also easily and correctly handle the delicate discrete null spaces.
8ZHAO Yanpu, TANG Zuqi
"Improved Equilibrated Error Estimates for Open Boundary Magnetostatic Problems Based on Dual A and H Formulations"
IEEE Transactions on Magnetics, Vol. 55, N°. 6, p. 1-5, ISBN 1941-0069, 6, url,
Calculating the bounds of global energy is an important issue in computational electromagnetism, which can provide guaranteed results when extracting inductance parameters. In this paper, an improved equilibrated type a posteriori error estimate for open boundary magnetostatic problems is proposed. We derive our error estimator based on vector dual formulations, which can be efficiently solved using parallel sparse direct solvers. The new estimator can provide a sharp and guaranteed estimate of the finite-element spatial discretization error. Moreover, the computational cost is cheaper than using existing equilibrated error estimators. Numerical experiments are carried out to showcase the performance of our error estimator, including the modified TEAM workshop problem 13 and the benchmark IEEJ problem.
9ZHAO Yanpu, TANG Zuqi
"Accurate Extraction of Winding Inductances using Dual Formulations without Source Field Computation"
IEEE Transactions on Magnetics, Vol. 55, N°. 6, p. 1-4, ISBN 1941-0069, 6, url,
Dual formulations are accurate in use for computing energy-related global quantities such as inductance and providing upper and lower bounds of the unknown true values of these global parameters, which is not possible if using a single formulation. Since traditional dual formulations result in totally different algebraic matrix equations, people have to develop two different finite element programs and solve the resultant two algebraic equation systems respectively. In this work two practical dual formulations
for open region magnetostatic problems, where the global finite element matrices are exactly the same, are adopted for extracting the winding inductances. Finite element formulation and implementation details are presented. Practical examples having complex windings are solved using the proposed methods to showcase the effectiveness and accuracy. High order FE basis functions are also used to enhance the solution accuracy. The proposed method is highly useful for medium-sized industrial applications by providing guaranteed inductance parameters.
10ZHAO Yanpu, TANG Zuqi
"A Symmetric Field-circuit Coupled Formulation for 3-D Transient Full-wave Maxwell Problems"
IEEE Transactions on Magnetics, Vol. 55, N°. 6, p. 1-4, ISBN 1941-0069, 6, url,
In this paper, a symmetric field-circuit coupled finite element method (FEM) for low-frequency (LF) full-wave Maxwell problems using a magnetic vector potential (MVP) formulation is proposed. The resultant fully-discrete coefficient matrix is made symmetric for the first time by introducing the so-called source electric scalar potential (ESP) for solid conductors, where the terminal currents are converted from surface integrations of the current density vectors to volumetric integrations. Numerical examples, including a benchmark capacitor charging problem with external circuit connections, are solved and the numerical results match well with reference solutions. The proposed formulation is useful when analyzing electromagnetic fields with coupled inductive-capacitive effects and external circuit connections.
11HENNERON Thomas, PIERQUIN Antoine, CLENET Stéphane
"Mesh Deformation based on Radial Basis Function Interpolation applied to Low Frequency Electromagnetic Problem"
IEEE Transactions on Magnetics, 6
"An Improved Newton Method Based on Choosing Initial Guess Applied to Scalar Formulation in Nonlinear Magnetostatics"
IEEE Transactions on Magnetics, Vol. 55, N°. 6, p. 1-4, ISBN 1941-0069, 6, url,
An improved starting point Newton method applied to 3-D scalar formulation in magnetostatics is proposed in this paper. Compared with the classical Newton method, the inexact-Newton and quasi-Newton methods are reported by testing on a benchmark problem as well as an industrial example. Remarkable convergence acceleration using the proposed strategy is observed, and thus, it significantly
reduces the computational time.
13ZHAO Yanpu, TANG Zuqi
"A Novel Gauged Potential Formulation for 3-D Electromagnetic Field Analysis Including Both Inductive and Capacitive Effects"
IEEE Transactions on Magnetics, Vol. 55, N°. 6, ISBN 1941-0069, 6, url,
In this paper, a novel potential formulation for low-frequency (LF) applications taking into account both inductive and capacitive effects but without considering wave propagation is proposed. Both time-domain and frequency-domain formulations are presented.
The resultant fully discrete finite-element matrix is made symmetric by incorporating a gauge condition and also rewriting the current continuity equation. To improve numerical accuracy and computational efficiency, high-order mixed-edge elements and nodal elements are adopted to approximate the vector and scalar unknown variables together with high-order time-stepping schemes. Several numerical examples are solved to validate and showcase the accuracy of the proposed methods. The proposed formulations are stable in use for LF electromagnetic field computations by considering inductive and capacitive effects simultaneously, such as finding the resonant frequencies of wireless power transfer devices.
14EL YOUSSEF Mohamad, BENABOU Abdelkader, COOREVITS Thierry, VAN GORP Adrien, CLENET Stéphane, FAVEROLLE Pierre, MIPO Jean-Claude, LAVALLEY Yannick, LECUPPE Thomas
"Punching effect directly on electrical machine stator strips"
International Journal of Applied Electromagnetics and Mechanics (IJAEM), Vol. 61, N°. S1, p. S107-S114, 6, url,
An experimental approach is proposed to study the influence of the punching on the magnetic behavior of a stator core strips. Specimens of a non-oriented M330-A35 punched lamination sheet are picked up from a real manufacturing process. The proposed approach is based on the use of two types of specimens; one is a closed magnetic circuit while the second one is split into two parts. Magnetic measurements are performed on both types and compared with those made on specimens cut by WEDM which has a lower impact on the magnetic behavior. The specific purpose of this paper is to investigate the impact of punching in presence of an air gap that exists in electrical machines between rotor and stator. Therefore a dedicated device, optimized by FEM simulations, is developed in order to account accurately the air gap.
15JAMIL Meryeme, BENABOU Abdelkader, CLENET Stéphane, ARBENZ Laure, MIPO Jean-Claude
"Development and validation of an electrical and magnetic characterization device for massive parallelepiped specimens"
International Journal of Applied Electromagnetics and Mechanics (IJAEM), Vol. 61, N°. S1, p. S31-S38, 6, url,
Claw pole machine performances are strongly related to the electromagnetic properties of ferromagnetic materials. These properties are impacted by the manufacturing processes, in a heterogeneous way, as well as by the thermal behavior of the machine and the mechanical stress distribution. Due to the complexity of CP geometry, extracted samples cannot respect the dimensions prescribed in international standards of electric and magnetic measurements. This paper proposes a specific methodology to characterize the electrical conductivity and the magnetic behavior of massive parallelepiped specimens extracted from different locations of a CP rotor.
"Control Strategies for Non-sinusoidal Multiphase PMSM Drives in Faulty Modes under Constraints on Copper Losses and Peak Phase Voltage"
IET Electric Power Applications, 5, url,
In the context of future Permanent Magnet Synchronous Machines (PMSMs) with a high number of phases (>7) in integrated drives, this paper proposes several control strategies when multiphase PMSMs with non-sinusoidal back electromotive forces (back-EMFs) operate in healthy and open-circuit faults. In all operation modes, the considered constraint on current is related to the maximum root mean square (RMS) current allowable in one phase of the machine. The constraint on voltage limits the maximum peak value of the phase voltage determined by the DC-bus voltage of the converter. When one or two phases are open-circuited, to maximize torque and respect the constraints, new current references obtained by several proposed methods in rotating and natural frames are imposed to the machine. Due to the non-sinusoidal waveform of back-EMFs and the considered constraints, numerical computations based on analytical formulations are required to obtain maximal torque-speed characteristics, including the flux-weakening operation. The usefulness of the proposed strategies is verified by numerical and experimental results.
"Torque optimization of seven-phase BLDC machines in normal and degraded modes with constraints on current and voltage"
IET Journal Of Engineering, Vol. 2019, N°. 17, p. 3818-3824, ISBN 2051-3305, 5, url,
This paper proposes several easy-to-implement control strategies when seven-phase axial flux brushless DC machines with trapezoidal back electromotive forces operate in normal and faulty modes by taking into account constraints on voltage and current. The constraints are related to the converter and machine design in terms of maximum values of current and voltage. The considered faults are cases in which one or two phases of the machine are open-circuited. Numerical computations based on analytical formulations are applied to obtain torque-speed characteristics, including the flux-weakening operation. The methods determine current references to ensure the torque optimizations while currents and voltages are within their limits. The usefulness of the methods is verified by numerical results.
18ZAIDI Bilel, VIDET Arnaud, IDIR Nadir
"Optimization method of CM inductor volume taking into account the magnetic core saturation issues"
IEEE Transactions on Power Electronics, Vol. 34, N°. 5, p. 4279 - 4291, 5, url
"Model predictive optimal control considering current and voltage limitations: Real-time validation using OPAL-RT technologies and five-phase permanent magnet synchronous machines"
Mathematics and Computers in Simulation, Vol. 158, p. 148-161, ISBN DOI: 10.1016/j.matcom.2018.07.005, 4, url,
Multiphase machines have recently gained interest in the research community for their use in applications where high power density, wide speed range and fault-tolerant capabilities are required. The optimal control of such drives requires the consideration of voltage and current limits imposed by the power converter and the machine. While conventional three-phase drives have been extensively analyzed taking into account such limits, the same cannot be said in the multiphase drives’ case. This paper deals with this issue, where a novel two-stage Model Predictive optimal Control (2S-MPC) technique is presented, and a five-phase permanent magnet synchronous multiphase machine (PMSM) is used as a case example. The proposed method first applies a Continuous-Control-Set Model Predictive Control (CCS-MPC) stage to obtain the optimal real-time stator current reference for given DC-link voltage and stator current limits, exploiting the maximum performance characteristics of the multiphase drive. Then, a Finite-Control-Set Model Predictive Control (FCS-MPC) stage is utilized to generate the switching state in the power converter and force the stator current tracking. An experimental validation of the proposed controller is finally provided using a real-time simulation environment based on OPAL-RT technologies.
20PACE Loris, DEFRANCE Nicolas, VIDET Arnaud, IDIR Nadir, DEJAEGER Jean-Claude
"Extraction of Packaged GaN Power Transistors Parasitics Using S-Parameters"
IEEE Transactions on Electron Devices, p. 1-6, 4, url,
In order to better predict the high frequency switching operation of transistors in power converters, parasitic elements of these devices such as resistances, inductances and capacitances must be accurately evaluated. This paper reports on the characterization of a gallium nitride (GaN) packaged power transistor using S-parameters in order to extract the device parasitics. Because the transistor is packaged, a calibration technique is carried out using specific test fixtures designed on FR4 printed circuit board (PCB) in order to get the S-parameters in the transistor plane from the measurement. The proposed method is suitable for a wide range of power devices. In this work it is applied to an enhancement mode GaN High Electron Mobility Transistor (HEMT).The impact of junction temperature on drain and source resistances is also evaluated. According to characterization results, equation-based modeling is proposed for the non-linear parameters. The extracted parasitic elements are compared with reference values given by the device manufacturer.
"The Perception of Ultrasonic Square Reductions of Friction with Variable Sharpness and Duration"
IEEE Transactions on Haptics, Vol. 12, N°. 2, p. 179-188, ISBN 2329-4051, 4, url,
The human perception of square ultrasonicmodulation of the finger-surface friction was investigated duringactive tactile exploration by using short frictional cues of varyingduration and sharpness. In a first experiment, we asked participantsto discriminate the transition time and duration of short squareultrasonic reductions of friction. They proved very sensitive todiscriminate millisecond differences in these two parameters withthe average psychophysical thresholds being 2.3–2.4 ms for bothparameters. A second experiment focused on the perception ofsquare friction reductions with variable transition times anddurations. We found that for durations of the stimulation largerthan 90 ms, participants often perceived three or four edges whenonly two stimulations were presented while they consistently felttwo edges for signals shorter than 50 ms. A subsequent analysisof the contact forces induced by these ultrasonic stimulationsduring slow and fast active exploration showed that two identicalconsecutive ultrasonic pulses can induce significantly differentfrictional dynamics especially during fast motion of the finger.These results confirm the human sensitivity to transient frictionalcues and suggest that the human perception of square reductions offriction can depend on their sharpness and duration as well as onthe speed of exploration.
"Predictive controller considering electrical constraints: a case example for five-phase induction machines"
IET Electric Power Applications, ISBN DOI: 10.1049/iet-epa.2018.5873, 3, url,
The modern control of power drives involves the consideration of electrical constraints in the regulator strategy,
including voltage/current limits imposed by the power converter and the electrical machine, or magnetic saturation due to
the iron core. This issue has been extensively analysed in conventional three-phase drives but rarely studied in multiphase
ones, despite the current interest of the multiphase technology in high-power density, wide speed range or fault-tolerant
applications. In this paper, a generalised controller using model-based predictive control techniques is introduced. The
proposal is based on two cascaded predictive stages. First, a continuous stage generates the optimal stator current reference
complying with the electrical limits of the drive to exploit its maximum performance characteristic. Then, a finite-control-set
predictive controller regulates the stator current and generates the switching state in the power converter. A five-phase
induction machine with concentrated windings is used as modern high-performance drive case example. This is a common
multiphase drive that can be considered as a system with two frequency-domain control subspaces, where fundamental and
third harmonic currents are orthogonal components involved in the torque production. Experimental results are provided to
analyse the proposed controller, where optimal reference currents are generated and steady/transient states are studied.
23AL EIT Moustafa, CLENET Stéphane, HENNERON Thomas, GUYOMARCH Frédéric
"Exploitation of Independent Stator and Rotor Geometrical Periodicities in Electrical Machines Using the Schur Complement"
International Journal of Applied Electromagnetics and Mechanics (IJAEM), 2
24BUIRE Jérôme, COLAS Frédéric, DIEULOT Jean-Yves, DE ALVARO GARCIA Léticia, GUILLAUD Xavier
"Confidence level optimization of DG piecewise affine controllers in distribution grids"
IEEE Transactions on Smart Grid, 2, url,
Distributed generators (DG) reactive powers are controlled to mitigate voltage overshoots in distribution grids with stochastic power production and consumption. Classical DGs controllers may embed piecewise affine laws with dead-band terms. Their settings are usually tuned using a decentralized method which uses local data and optimizes only the DG node behavior. It is shown that when short-term forecasts of stochastic powers are Gaussian and the grid model is assumed to be linear, nodes voltages can either be approximated by Gaussian or sums of truncated Gaussian variables. In the latter case, the voltages probability density functions (pdf) that are needed to compute the overvoltage risks or DG control effort are less straightforward than for normal distributions. These pdf are used into a centralized optimization problem which tunes all DGs control parameters. The objectives consist in maximizing the confidence levels for which voltages and powers remain in prescribed domains and minimizing voltage variances and DG efforts. Simulations on a real distribution grid model show that the truncated Gaussian representation is relevant and that control parameters can easily be updated even when extra DGs are added to the grid. The DG reactive power can be reduced down to 50 % or node voltages variances can be reduced down to 30 %.
"Robust Control Design of MMC-HVDC Systems using Multivariable Optimal Guaranteed Cost approach"
IEEE Transactions on Industry Applications, 2, url,
The Modular Multilevel Converter (MMC) represents the important technological innovation that emerged among the diverse available topologies of VSC and is avowedly the most suitable solution for converters in HVDC (High Voltage Direct Current) transmission and MTDC (Multi-Terminal Direct Current) grids. Special focus is given through this paper to the dynamic performance of an MMC-based, back-to-back HVDC system. Using an optimal guaranteed cost control theory, a robust control approach is designed in order to reject the impact of the unmodeled uncertainty in the AC side of the MMC converter. For this aim, a small-signal state-space linear model is derived for the control design of an advanced local controller of each MMC station. Furthermore, a new optimal guaranteed cost controller is proposed based on convex optimization problem using LMI optimization theory. The proposed approach leads to regulate simultaneously the AC grid and differential currents as well as total stored energy per phase in abc frame. To ensure the energy balancing between upper and lower arm per phase, an outer control loop is used to control the energy difference per phase between upper and lower arms of MMC. For the MMC linked to HVDC system, the active power reference input is generated through an outer classical DC voltage controller. This combined control strategy between classic and advanced robust regulation methods allows exploiting the advantages of both control methods. Effectiveness of the proposed optimal robust control strategy for back-to-back MMC-HVDC system is evaluated across accurate and skillful simulation study under Matlab/SimPowerSystem environment.
"Real-Time Energy Management of Battery/Supercapacitor Electric Vehicles Based on an Adaptation of Pontryagin’s Minimum Principle"
IEEE Transactions on Vehicular Technology, Vol. 68, N°. 1, p. 203 - 212, 1, url,
The combination of batteries and supercapacitors is promising in electric vehicles context to minimize battery aging. Such a system needs an energy management strategy (EMS) that distributes energy in real-time for real driving cycles. Pontryagin’s minimum principle (PMP) is widely used in adaptive forms to develop real-time optimization-based EMSs thanks to its analytical approach. This methodology leads to an off-line optimal solution which requires an extra adaptive mechanism for real-time applications. In this paper, a simplification of the PMP method is proposed to avoid the adaptation mechanism in real-time. This new EMS is compared to well-known conventional strategies by simulation. Furthermore, experimental results are provided to assess the real-time operation of the proposed EMS. Simulation and experimental results prove the advantages of the proposed approach by a reduction up to 50% of the batteries rms current on a real-world driving cycle compared to a battery-only EV.
1VERMEERSCH Pierre, GRUSON François, GUILLAUD Xavier, MERLIN Michael Marc Claude, EGROT Philippe
"Energy and Director Switches Commutation Controls for the Alternate Arm Converter"
Mathematics and Computers in Simulation, 12, url
2LI Hailin, TANG Zuqi, WANG Shuhong, ZHU Jianguo
"Multiscale modeling of magnetic distribution of ribbon magnetic cores"
CES Transactions on Electrical Machines and Systems, Vol. 2, N°. 4, p. 425 - 429, 12, url
"Stabilised reduced-order model of a non-linear eddy current problem by a Gappy-POD approach"
IEEE Transactions on Magnetics, 12
4YAN Xingyu, ABBES Dhaker, FRANCOIS Bruno
"Development of a Tool for Urban Microgrid Optimal Energy Planning and Management"
Simulation Modelling Practice and Theory , Elsevier, Vol. 89, p. 64-81, 12, url,
Small-sized variable renewable energy sources (RES) live a large-scale development in urban electrical systems. They increase local high dynamic unbalancing and then can create instabilities on the inertia response. Thus, setting an adequate operating reserve (OR) power to compensate the unpredicted imbalance between RES generation and consumption is essential for power system security. Indeed, effective calculation and dispatching of OR considering inaccurate forecast of both RES and load demand can provide substantial cost reductions. Thus, to facilitate the energy management and system optimization in an urban microgrid (MG), a user-friendly tool for Energy Management System and Operational Planning has been developed. The tool provides a complete set of user-friendly graphical interfaces to study the details of photovoltaic (PV) and batteries, load demand, as well as micro gas turbines (MGTs). Furthermore, this energy management system allows system operators to properly model RES uncertainty. In addition, it could assist operators for the day-ahead energy management with an efficient information system and an intelligent management.
5KRIM Youssef, ABBES Dhaker, KRIM Saber, MIMOUNI Mohamed Faouzi
"Intelligent droop control and power management of active generator for ancillary services under grid instability using fuzzy logic technology"
Control Engineering Practice, Vol. 81, p. 215-230, 12, url,
In this paper, a control and power supervisor for a flexible operation of a Renewable Distributed Generator (RDG) is introduced. This RDG consists of a combination of a wind system and a hybrid storage system made up of Batteries (BT) and Super-Capacitors (SC). RDG is associated with a load and a fluctuating grid to form an Active Generator (AG). According to the grid fluctuation, AG can operate in a grid-connected and standalone mode. The objective of this work is to investigate a novel control strategy for AG integrated into the grid in order to maintain its voltage and frequency in an allowable range and to ensure the continuity of the power supply in case of a grid fault. The structure of the proposed control strategy consists of a Fuzzy Logic Supervisor (FLS), an adaptive Fuzzy Logic Droop Control (FLDC) and a Fuzzy Logic Islanding Detection (FLID). FLS is developed to manage the power flows between the storage devices by choosing the optimal operating mode, thereby ensuring the grid stability and the continuous supply of the load by maintaining the state of charge of SC and BT at acceptable levels and to reduce stresses on BT and improve their life cycle. FLID is used to detect de standalone mode in case of grid failure. Finally, FLDC is used to control the active and reactive powers exchanged with the grid, ensuring its stability by maintaining its frequency and its voltage in optimal margins. The effectiveness of the proposed control method is validated by simulation results and compared with a generalized control technique.
"Integrated traction / charge / air compression supply using 3-phase split-windings motor for electric vehicles"
IEEE Transactions on Power Electronics, Vol. 33, N°. 11, p. 10003-10012, ISBN doi: 10.1109/TPEL.2018.2810542, 11, url,
High cost, no-ideal driving range and charge time limit electric vehicle market share. Facing these challenges, an integrated motor drive/battery charger system has been proposed by Valeo. A further advancement, based on this system, is present in this paper; for the first time, the integration of traction, charging and air-compressor supply modes is proposed and tested by real-time experimentation. This integrated system is expected to increase the vehicle component compactness and power, therefore potentially reduce the cost and battery charging time. An overall and unique control scheme is detailed to achieve the three main operating modes: traction, charging and air-compressor supply modes. The real-time experimentation results show the system feasibility.
7HUSSAIN Sajid, BENABOU Abdelkader, CLENET Stéphane, LOWTHER David A.
"Temperature Dependence in the Jiles-Atherton Model for Non-Oriented Electrical Steels: An Engineering Approach"
IEEE Transactions on Magnetics, Vol. 54, N°. 11, 11, url,
High operating temperatures modify the magnetic behavior of ferromagnetic cores which may affect the performance of electrical machines. Therefore, a temperature-dependent material model is necessary to model the electrical machine behavior more accurately during the design process. Physics-inspired hysteresis models, such as the Jiles-Atherton (JA) model, seem to be promising candidates to incorporate temperature effects and can be embedded in finite element simulations. In this paper, we have identified the JA model parameters from measurements for a temperature range experienced by non-oriented electrical steels in electrical machines during their operation. Based on the analysis, a parameter reduction has been performed. The proposed approach simplifies the identification procedures by reducing the number of model parameters and does not require any additional material information, such as the Curie temperature. The resulting temperature-dependent JA model is validated against measurements, and the results are in good agreement.
8CREUSE Emmanuel, LE MENACH Yvonnick, NICAISE Serge, PIRIOU Francis, TITTARELLI Roberta
"Two guaranteed equilibrated error estimators for Harmonic formulations in eddy current problems"
Computers & Mathematics with Applications, 10, url,
In this paper a guaranteed equilibrated error estimator is developed for the 3D harmonic magnetodynamic problem of Maxwell’s system. This system is recasted in the classical A-phi potential formulation and solved by the Finite Element method. The error estimator is built starting from the A-phi numerical solution by a local flux reconstruction technique. Its equivalence with the error in the energy norm is established. A comparison of this estimator with an equilibrated error estimator already developed through a complementary problem points out the advantages and drawbacks of these two estimators. In particular, an analytical benchmark test illustrates the obtained theoretical results and a physical benchmark test shows the efficiency of these two estimators.
9FREYTES Julian, AKKARI Samy, RAULT Pierre, BELHAOUANE Moez, GRUSON François, COLAS Frédéric, GUILLAUD Xavier
"Dynamic Analysis of MMC-Based MTDC Grids: Use of MMC Energy to Improve Voltage Behavior"
IEEE Transactions on Power Delivery, 9, url,
This article deals with DC voltage dynamics of Multi-Terminal HVDC grids with energy-based controlled Mo\-dular Multilevel Converters (MMC) adopting the commonly used power-voltage droop control technique for power flow dispatch. Special focus is given on the energy management strategies of the MMCs and their ability to influence on the DC voltage dynamics. First, it is shown that decoupling the MMC energy from the DC side by controlling the energy to a fixed value, regardless of the DC voltage level, causes large and undesired DC voltage transient after a sudden power flow change. Second, the Virtual Capacitor Control technique is implemented in order to improve the results, however, its limitations on droop-based MTDC grids are highlighted. Finally, a novel energy management approach is proposed to improve the performance of the later method. These studies are performed with detailed MMC models suitable for the use of linear analysis techniques. The derived MTDC models are validated against time-domain simulations using detailed EMT MMC models with 400 sub-modules per arm.
10AL EIT Moustafa, CLENET Stéphane, HENNERON Thomas
"Finite-Element Model Reduction of Surface-Mounted Permanent Magnet Machines by Exploitation of Geometrical Periodicity"
IEEE Transactions on Magnetics, Vol. 54, N°. 9, 9,
This paper presents a methodology that allows taking advantage of the geometrical periodicity of electrical machines together with the modeling of rotor motion. It enables by means of the discrete Fourier transform (DFT) to reduce the large-scale system obtained from the finite-element model to several smaller independent subsystems, allowing a shortening of the computational time. Due to DFT properties, the computational time can be more reduced especially when we consider the inter-dependence of the spectral components under either balanced or unbalanced supply condition. In addition, a further reduction is possible in the case of balanced regimes where the distribution of the eventual numerical solution is governed by a limited number of prevailing harmonics.
11MOHAMODHOSEN Bilquis, GILLON Frédéric, TOUNZI Abdelmounaïm, CHEVALLIER Loïc
"Topology Optimisation using Nonlinear Behaviour of Ferromagnetic Materials"
The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), 9, url
"New Electrical Inversed-Series Connection for Even-Phase Symmetrical Motors"
IEEE Transactions on Power Electronics, Vol. 33, N°. 9, p. 7938-7957, ISBN DOI : 10.1109/TPEL.2017.2766359, 9, url,
This paper presents an extension of previous methods in order to find electrical series-connections between multiphase machines allowing the independent control of each one of them. These new electrical series-connections explore the symmetrical disposition of the phases of even-multiphase machines, allowing the inversed connection of some of the phases, different from the direct connections as it was previously done. Therefore, electrical series-connections of two symmetrical 6-phase or of four symmetrical 10-phase machines are now possible. Besides that, this new solution ensures a natural independent control of permanent magnet synchronous machines even if the back-electromotive forces generated by the rotor are not sinusoidal, without need of special machine conception or supplementary control strategy. This control independency is mathematically proved using the decomposition of multiphase machines in fictitious diphase and homopolar machines. Experimental results are presented to show the functioning and the advantages of this new coupling for two symmetrical 6-phase permanent magnet synchronous machines.
"Finite-time stabilisation of some power transmission systems"
Transactions of the Institute of Measurement and Control ( SAGE Journals), p. 1-16, 8, url,
This paper presents the finite time stabilisation strategy of two problems: the first one is the control of the high voltage direct current based on voltage source converter, while the second is the control of the multi-terminal direct current transmission systems. Subject to finite-time control design strategy, a linear and nonlinear dynamic model are derived based on the state-space description. Furthermore, continuous or discontinuous finite-time feedbacks are proposed to ensure the tracking of the output variables and to enhance the stability of the studied high voltage direct current system. In addition, the proposed control strategy is extended for the multi-terminal direct current system. A comparative study between various approaches (Proportional-Integral control, continuous or discontinuous stabilizing finite-time controllers and control by backstepping) is presented and shows that the finite-time continuous feedback gives an excellent transient response.
14DARQUES Kévin, TOUNZI Abdelmounaïm, LE MENACH Yvonnick, BEDDEK Karim
"Study of shaft voltage of a simplified synchronous generator"
International Journal of Applied Electromagnetics and Mechanics (IJAEM), 8
15ZHANG Jian, LEONTIDIS Vlasios, DAZIN Antoine, TOUNZI Abdelmounaïm, DELARUE Philippe, CAIGNAERT Guy, PIRIOU Francis, LIBAUX Antoine
"Canal Lock Variable Speed Hydropower Turbine Design and Control"
IET Renewable Energy Generation, 8, url
16KRIM Youssef, ABBES Dhaker, KRIM Saber, MIMOUNI Mohamed Faouzi
"A flexible control strategy of a renewable active generator to participate in system services under grid faults"
International transactions on Electrical Energy Systems, 8, url,
This paper was interested in flexible control of an active generator (AG) that includes a wind turbine, battery‐supercapacitors hybrid storage system, and loads. This AG can operate according to grid stability in islanded, synchronization, and grid‐connected modes. The developed control strategy comprises two principal control tasks: the first one is a two‐layer power management algorithm (PMA). The response of two‐layer PMA enables to detect the islanding mode in case of grid fault and to monitor the renewable power generation into nine operating modes according to the state‐of‐charge of each storage system. The second task is droop control. This droop control aims to reduce grid voltage and frequency variations. It controls exchanged powers with grid to ensure its stability. It also ensures a continuous supply of load in case of grid fault. The system is simulated using MATLAB software, and results are provided in order to show the feasibility of this control strategy.
17BORSENBERGER Marc, BENABOU Abdelkader, BAUDOUIN Cyrille, BIGOT Régis, FAVEROLLE Pierre, MIPO Jean-Claude
"Characterization of massive magnetic parts with a dedicated device"
International Journal of Applied Electromagnetics and Mechanics (IJAEM), Vol. 57, N°. 4, p. 457-472, 8, url,
Magnetic parts are usually composed of a stack of electrical steel laminations to reduce the eddy current losses. However, for cost reasons or for specific applications the magnetic core can be made from massive steel and thus manufactured with adapted processes such as forging. Such process may lead to inhomogeneous and degraded magnetic properties. Therefore, this study proposes a specific device for characterizing magnetic properties of samples which are to be representative of a massive part. The measure is based on the Faraday’s equation to determine the magnetic flux density and the Hall effect to estimate the magnetic field inside the sample. Practically this is realized with classical components such as Hall probes, a secondary winding and an electromagnet device. However their combination is unique to perform magnetic characterization on massive samples, which are less affected by the sampling technique and may have anisotropic properties. The device is dimensioned thanks to FE-Simulation and validated according repeatability, sensitivity and trueness analysis. Eventually the characterization is performed on samples with different material parameters showing the effect of the grain size on the specific losses. The expected effect of the grain flow on magnetic properties is however not proven yet.
18KANCHEV Hristiyan, HINOV Nikolay, GILEV Bogdan, FRANCOIS Bruno
"Modelling and Control by Neural Network of Electric Vehicle Traction System"
19KRIM Youssef, ABBES Dhaker, KRIM Saber, MIMOUNI Mohamed Faouzi
"Power management and second-order sliding mode control for standalone hybrid wind energy with battery energy storage system"
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, ISBN https://doi.org/10.1177/0959651818784320, 7, url,
The purpose of this article is to provide a high performance control of a renewable distributed generator to guarantee an electric power quality and jointly reduce the mechanical stress despite any possible uncertainties such as the random nature of wind speed, the presence of parameters uncertainties, and external perturbations acting on the system (sudden load variation). The renewable distributed generator integrating a wind generator associated with a batteries module is considered as an energy storage device and a variable load. The proposed method is designed by a power management supervisor and a sliding mode control technique. First, the power management supervisor is used to monitor the power flows transferred between the different system devices depending on the load variation and on the intermittency of wind production. In fact, it enables to ensure the balance at the continuous, Direct Current (DC) bus between the powers supplied by the renewable distributed generator and those demanded by the load. In addition, it prevents batteries from exceeding its maximum or minimum state of charge (SOCbat) by keeping it at an acceptable level [30%, 90%]. Second, a second-order sliding mode control based on the super-twisting algorithm is suggested to control the two subsystems (generator side and load side converters). The main target of the first one is to extract the maximum wind power taking into account the parameter variations and the fluctuating nature of wind. The second one is to investigate a second-order sliding mode control of active and reactive load power quantities, which provides better results in terms of attenuation of the harmonics present in the load voltage and current while considering the sudden load variations. In addition, a proportional–integral controller is also designed and simulated to establish a comparison framework. According to the simulation results, the second-order sliding mode control successfully deals with the nonlinearity of the renewable distributed generator compared with the proportional–integral performance.
"Matrix Interpolation based Reduced Order Modelling of a Levitation device with Eddy Current effects"
IEEE Transactions on Magnetics, Vol. 54, N°. 6, 6
21GONG Jinlin, ZAHR Hussein, SEMAIL Eric, TRABELSI Mohamed, SCUILLER Franck, ASLAN Bassel
"Design Considerations of Five-Phase Machine with Double p/3p Polarity"
IEEE Transactions on Energy Conversion, ISBN DOI: 10.1109/TEC.2018.2851287, 6, url,
In the context of traction drives with required torque transient capabilities and a classically wide flux weakening speed range, this paper gives design considerations of a particular Double-Polarity (DP) five-phase machine. Beyond its intrinsic fault tolerance due its five phases, it specificity is the ability to develop torques of comparable values under three kinds of supply: with only first, third or both first and third sinusoidal currents. This property, due to first (E1) and third (E3) harmonic electromotive forces (emf) of comparable values, gives more degrees of freedom for the control of the machine. Unlike three-phase sinusoidal machine, flux weakening is no more the unique solution when maximum voltage is reached. Thanks to the extra degrees of freedom in this kind of machines, more possibilities for the control of the torque and current supply can be applied. At first, elements for the choice of slots/poles combination of such DP machines are given. Then, in case of an Interior Permanent Magnet Synchronous Machine (IPMSM), possible adaptations of the rotor are proposed in order to bring the double p/3p polarity property. The last design criterion considered is the level of eddy-current losses, important at high frequencies. For proof of the concept effectiveness, a prototype with a five-phase fractional-slot concentrated winding of 40 slots and 16/48 poles is presented with results from experimental set-up and Finite Element modeling. A comparison with equivalent no-fault-tolerant three-phase 24 slots /16 poles machines is also carried out
22CAMILLIERI Brigitte, BUENO Marie-Ange, FABRE Marie, JUAN Benjamin, LEMAIRE-SEMAIL Betty, MOUCHNINO Laurence
"From finger friction and induced vibrations to brain activation: Tactile comparison between real and virtual textile fabrics"
Tribology International, N°. 126, p. 283-296, ISBN https://doi.org/10.1016/j.triboint.2018.05.031, 5,
The objective is to compare the tactile rendering of real and virtual textile surfaces. A grooved woven (twill) and
a hairy fabric (velvet) were studied. The virtual fabrics were simulated with a tactile device. The comparison was
done by measuring the finger interaction in terms of coefficient of friction (COF) and induced vibrations, and
brain activation by electroencephalography (EEG). EEG showed that the real and virtual twill fabrics are close,
contrary to real and virtual velvets. The finger friction showed that for both fabrics the rendering of virtual
compared to real fabrics is very good in terms of COF, low in terms of finger induced vibrations in high fre-
quencies, but differs for the velvet texture for low frequencies.
"Comparison of main magnetic force computation methods for noise and vibration assessment in electrical machines"
IEEE Transactions on Magnetics, 5, url,
This paper presents a comparison of several methods to compute the magnetic forces experienced by the stator teeth of electrical machines. In particular, the comparison focuses on the virtual work principle (VWP)-based nodal forces and the Maxwell tensor (MT) applied on different surfaces. The VWP is set as the reference. The magnetic field is computed either with finite element analysis or with the semi-analytical subdomain method (SDM). First, the magnetic saturation in iron cores is neglected (linear B-H curve). Then, the saturation effect is discussed in a second part. Homogeneous media are considered and all simulations are performed in 2-D. The link between the slot's magnetic flux and the tangential force harmonics is also highlighted. The comparison is performed on the stator of a surface-mounted permanent-magnet synchronous machine. While the different methods disagree on the local distribution of the magnetic forces at the stator surface, they give similar results concerning the integrated forces per tooth, referred as lumped forces. This conclusion is mitigated for saturated cases: the time harmonics are correctly computed with any of the presented lumped force methods but the amplitude of each harmonic is different between methods. Nonetheless, the use of the SDM remains accurate with MT in the air gap even with saturation for design and diagnostic of electromagnetic noise in electrical machines. However, for more accurate studies based on the local magnetic pressure, the VWP is strongly recommended.
24ČERMÁK Martin, HECHT Frédéric, TANG Zuqi, VOHRALÍK Martin
"Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem"
Numerische Mathematik, Vol. 138, N°. 4, p. 1027–1065, 4, url,
In this paper, we develop adaptive inexact versions of iterative algorithms applied to finite element discretizations of the linear Stokes problem. We base our developments on an equilibrated stress a posteriori error estimate distinguishing the different error components, namely the discretization error component, the (inner) algebraic solver error component, and possibly the outer algebraic solver error component for algorithms of the Uzawa type. We prove that our estimate gives a guaranteed upper bound on the total error, as well as a polynomial-degree-robust local efficiency, and this on each step of the employed iterative algorithm. Our adaptive algorithms stop the iterations when the corresponding error components do not have a significant influence on the total error. The developed framework covers all standard conforming and conforming stabilized finite element methods on simplicial and rectangular parallelepipeds meshes in two or three space dimensions and an arbitrary algebraic solver. Implementation into the FreeFem++ programming language is invoked and numerical examples showcase the performance of our a posteriori estimates and of the proposed adaptive strategies. As example, we choose here the unpreconditioned and preconditioned Uzawa algorithm and the preconditioned minimum residual algorithm, in combination with the Taylor–Hood discretization.
"POD-Based Reduced-Order Model of an Eddy-Current Levitation Problem"
Scientific Computing in Electrical Engineering. Mathematics in Industry, Vol. 28, 4
26ZHANG Haibo, GRUSON François, FLOREZ Diana, SAUDEMONT Christophe
"Overvoltage Limitation Method of an Offshore Wind Farm with DC Series Parallel Collection Grid"
IEEE Transactions on Sustainable Energy, 4
27DAMING Zhou, NGUYEN Thu-Trang, BREAZ Elena, ZHAO Dongdong, CLENET Stéphane, GAO Fei
"Global parameters sensitivity analysis and development of a two-dimensional real-time model of proton-exchange-membrane fuel cells"
Energy Conversion and Management, Vol. 162, p. 276-292, 4
28MORIN Juliette, COLAS Frédéric, DIEULOT Jean-Yves, GRENARD Sébastien, GUILLAUD Xavier
"Coordinated control of active distribution networks to help a transmission system in emergency situation"
Energy Systems, 4, url,
This paper addresses the relevance of using reactive power from Medium Voltage (MV) networks to support the voltages of a High Voltage (HV) rural network in real-time. The selection and analysis of different optimal coordination strategies between the HV and several MV grids is investigated. The algorithms will control the reactive powers that can flow between HV/MV networks after a request from the Transmission Network Operator in case of an emergency situation such as a line outage. From a case study, the relevance of the coordination is enlightened and recommendations are given on how to tune and to combine the optimal algorithms with the advanced Volt Var Controllers of the distribution grids.
"Electro-kinematical simulation for flexible energetic studies of railway systems"
IEEE Transactions on Industrial Electronics, Vol. 65, N°. 4, p. 3592-3600, 4,
Simulation is a valuable tool to evaluate energy consumptions and design of railway systems. The system limitations have an important influence on the system behavior and must be taken into account in the simulation. Especially, the electro-mechanical limitations have an impact on the kinematical behavior. However, such limitations are often neglected in classical studies. This paper deals with the development of an adaptive electro-kinematical simulation to adapt the kinematical behavior according to the system’s limitations. A flexible simulation tool is obtained by taking into account electrical, mechanical, and kinematical limitations. This tool is experimentally validated on a real railway track. It is then used to study solutions to increase the transport capacity of a subway system, even when limitations occur.
30BRISSET Stéphane, TRAN Tuan-Vu
The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. 37, N°. 2, p. 617-629, 4,
A multiobjective branch and bound method is presented and applied to the bi-objective combinatorial optimization of a safety transformer. New criteria are proposed for the branching and discarding. They are based on the Pareto dominance and contribution metric. The comparison with exhaustive enumeration and non-dominated sorting genetic algorithm confirms the solutions. It appears that exact and approximate methods are both very sensitive to their control parameters.
31DENG Siyang, BRISSET Stéphane, CLENET Stéphane
The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. 37, N°. 2, p. 704-717, 4,
This paper compares different probabilistic optimization methods dealing with uncertainties. Reliability-Based Design Optimization is presented as well as various approaches to calculate the probability of failure. They are compared in terms of precision and number of evaluations on mathematical and electromagnetic design problems to highlight the most effective methods.
"Fast determination of the optimal control parameters of a switched reluctance machine using space mapping technique"
International Journal of Applied Electromagnetics and Mechanics (IJAEM), Vol. 56, N°. S1, p. 83-96, ISBN 10.3233/JAE-172281, 3,
Transient simulations of models are required for the study of several phenomena and calculation of some physical quantities. For instance, in the case of a switched reluctance machine (SRM), conducting transient simulations allows the calculation of electromagnetic torque ripple. This can be very time consuming, especially when using an iterative optimization algorithm to smooth the developed electromagnetic torque. In this paper, Output Space Mapping Proportional (OSMP) and Manifold Mapping (MM) are presented as a solution to accomplish a fast determination of the optimal control parameters of a SRM in order to improve its performance. A description of the considered optimization …problem is also provided, along with a detailed presentation of the coarse and fine models used. Finally, optimization results are presented, analyzed and validated using finite element-based model as well as measurements on the SRM prototype.
"Experimental Investigation of Inverter Open-Circuit Fault Diagnosis for Bi-Harmonic Five-Phase Permanent Magnet Drive"
IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, N°. 1, p. 339-351, ISBN DOI: 10.1109/JESTPE.2017.2719634, 3, url,
This paper proposes a procedure that is suitable for experimental investigation of real-time open-switch and open-phase faults diagnosis of a five-leg Voltage Source Inverter (VSI) feeding a five-phase bi-harmonic Permanent Magnet Synchronous Machine (5-Φ B-PMSM). The algorithm is based on the specific characteristics of multiphase machines, which allows inverter fault detection with sufficient robustness of the algorithm in the presence of fundamental and third harmonic components. Firstly, the inverter fault effects analysis is achieved in the characteristic subspaces of the five-phase PMSM. Specificities that are interesting for the elaboration of a real-time Fault Detection and Identification (FDI) process are highlighted. Original and particular algorithms are used for an accurate two-dimensional normalized fault vector extraction in a defined fault reference frame. This frame is dedicated only for fault detection and identification. To ensure the high immunity of the FDI process against transient states, a particular normalization procedure is applied. The normalized diagnostic signals are formulated from the defined frame and others variables derived from the reference and measured currents. Simulation and experimental results of open-switch and open-phase faults are provided to validate the proposed algorithm.
"An Accurate Third-order Normal Form Approximation for Power System Nonlinear Analysis"
IEEE Transaction on Power Systems, Vol. 33, N°. Issue 2, p. 2128 - 2139, ISBN doi: 10.1109/TPWRS.2017.2737462, 3, url,
The inclusion of higher-order terms in Small-Signal (Modal) analysis has been an intensive research topic in nonlinear power system analysis. The inclusion of 2nd order terms with the Method of Normal Forms (MNF) has been well developed and investigated, overcoming the linear conventional small-signal methods used in the power system control and stability analysis. However, application of the MNF has not yet been extended to include 3rd order terms in a mathematically accurate form to account for nonlinear dynamic stability and dynamic modal interactions. Due to the emergence of larger networks and the long transmission line with high impedance, modern grids exhibit predominant nonlinear oscillations and existing tools have to be upgraded to cope with this new situation. In this paper, fundamentals of Normal Form Theory along with a review of existing tools based on this theory is firstly presented. Secondly, a new formulation of MNF based on a third-order transformation of the system's dynamic approximation is proposed and nonlinear indexes are proposed to make possible to give information on the contribution of nonlinearities to the system stability and on the presence of significant 3rd order modal interactions. The induced benefits of the proposed method are compared to those afforded by existing MNFs. Finally, the proposed method is applied to a standard test system, the IEEE 2-area 4-generator system, and results given by the conventional linear small-signal and existing MNFs are compared to the proposed approach. The applicability of the proposed MNF to larger networks with more complex models has been evaluated on the New England New York 16 machine 5 area system.
"An Experimental Assessment of Open-Phase Fault-Tolerant Virtual Vector Based Direct Torque Control in Five-Phase Induction Motor Drives"
IEEE Transactions on Power Electronics, Vol. 33, N°. 3, p. 2774-2784, ISBN DOI: 10.1109/TPEL.2017.2711531, 3, url,
Direct torque control (DTC) has been recently used for the development of high performance five-phase induction motor (IM) drives, where normal operation of the system has been usually considered and the ability of DTC to manage the situation has been analyzed in comparison with different rotor field-oriented control (RFOC) strategies. The exploitation of fault-tolerant capabilities is also an interesting issue in multiphase machines, where the utility of RFOC controllers has been stated when the open-phase fault operation is considered. In this paper, the performance of DTC and RFOC controllers based on proportional resonant regulators and predictive control techniques is compared when an open-phase fault appears in a five-phase IM drive. Experimental tests are provided to compare the performance of the system using these control alternatives.
36PIERQUIN Antoine, HENNERON Thomas, CLENET Stéphane
"Data-Driven Model Order Reduction for Magnetostatic Problem Coupled with Circuit Equations"
IEEE Transactions on Magnetics, Vol. 54, N°. 3, 3
37TITTARELLI Roberta, LE MENACH Yvonnick, PIRIOU Francis, CREUSE Emmanuel, NICAISE Serge, DUCREUX Jean-Pierre
"Comparison of Numerical Error Estimators for Eddy Current Problems solved by FEM"
IEEE Transactions on Magnetics, Vol. 54, N°. 3, p. 7401204, 3,
In the domain of field computation with the finite element method, choosing the mesh refinement is an important step to obtain an accurate solution. In order to evaluate the quality of the mesh, a posteriori error estimators are frequently used. In this communication we propose to analyze and to compare residual and equilibrated error estimators for eddy current problems in the case of A-φ and TΩ formulations. The different properties of the estimators will be discussed.
38MONTIER Laurent, HENNERON Thomas, CLENET Stéphane, GOURSAUD Benjamin
"Proper Generalized Decomposition Applied on a Rotating Electrical Machine"
IEEE Transactions on Magnetics, 3
39HENNERON Thomas, CLENET Stéphane
"Application of the Proper Generalized Decomposition to Solve MagnetoElectric Problem"
IEEE Transactions on Magnetics, 3
"An improved 2D subdomain model of squirrel cage induction machine including winding and slotting harmonics at steady state"
IEEE Transactions on Magnetics, Vol. 54, N°. 2, 2
41FARZAM FAR Mehrnaz, MARTIN Floran, BELAHCEN Anouar, MONTIER Laurent, HENNERON Thomas
"Orthogonal Interpolation Method for Order Reduction of a Synchronous Machine Model"
IEEE Transactions on Magnetics, Vol. 54, N°. 2, p. 1-6, 2
42FU Dangshan, XU Yanliang, GILLON Frédéric, GONG Jinlin, BRACIKOWSKI Nicolas
"Presentation of a Novel Transverse-Flux Permanent Magnet Linear Motor and Its Magnetic Field Analysis Based on Schwarz–Christoffel Mapping Method"
IEEE Transactions on Magnetics, Vol. 54, N°. 3, 2,
novel transverse-flux permanent magnet linear motor (TFPMLM) named as double-sided double-excited one is proposed in this paper. Firstly, the operational principle and structural advantages of the TFPMLM are presented. Then, the 3-D magnetic circuit structure of the TFPMLM is simplified equivalently into a 2D one in order that Schwarz-Christoffel (SC) mapping method can be adopted to analyze the motor's magnetic field and characteristics. Then, the air-gap flux density distribution, back voltage and force waveforms when at no-load and at load are calculated by SC mapping method and 3-D FEM respectively for a prototype linear motor, The results from the two methods coincide much better with each other. At last, influences of magnet shape on cogging force are studied by SC method.
"Dynamic model of Li-Ion Batteries Incorporating Electrothermal and Ageing Aspects For Electric Vehicle Applications"
IEEE Transactions on Industrial Electronics, 2, url,
In this paper, a dynamic model of Li-ion batteries incorporating electrothermal and ageing aspects is proposed for electric vehicle applications. The main goal of the proposed model is to be both simple and sufficiently representative of the physical phenomena occurring in a battery cell. These two features allow for using this model as an evaluation tool of electric vehicle performances under different operational and environmental conditions. The developed model is based on an equivalent circuit diagram coupled with a thermal circuit and a semi-empirical ageing equation. Identification of parameters in the dynamic model is conducted by measurement tests in time-domain, which uses a hybrid Particle Swarm–Nelder–Mead optimization algorithm to achieve excellent prediction over the whole applicable current and state of charge ranges. The validation results show that the proposed model is able to simulate the dynamic interaction between the battery ageing and the thermal as well as electric behavior with sufficient accuracy in the range tested.
"Global Advanced Control Strategy for Modular Multilevel Converter integrated in a HVDC Link"
International Transactions on Electrical Energy Systems - John Wiley and Sons, Vol. 28, N°. 4, p. e2511, 1, url,
Modular Multilevel Converter (MMC) is becoming a promising converter technology for high-voltage direct current transmission systems due to its high modularity, availability, and power quality. It is a multi-input-multi-output nonlinear system. The control system for MMC is required to simultaneously achieve multiple control objectives. Existing control strategies for MMC are complex and
the controller parameter design is not straightforward for the nonlinear systems with highly coupled states. In view of this, a steady-state model for the MMC is developed on bilinear deviation state-space model around a working point. Based on linear quadratic regulator and least squares methods, a nonlinear polynomial feedback law is designed to simultaneously control the grid and differential currents, and the global stored energy and energy balancing between total upper and lower arms. To generate the optimal current references, a multivariable linear quadratic controller is used to regulate the total energy per leg, energy difference between each upper and lower arms, and the DC bus voltage. The proposed high-level controller depicts an original advanced control structure of MMC converter. The performance of the proposed strategy for a detailed model of 400-level MMC is evaluated using simulations in MATLAB/SIMULINK/SPS software environment.
"Real-time Backstepping control for fuel cell vehicle using supercapacitors"
IEEE Transactions on Vehicular Technology, Vol. 67, N°. 1, p. 306-314, 1
46LI Kaibo, BOUSCAYROL Alain, HAN Shoulaing, CUI Shumei
"Comparisons of Electrical Vehicles using Modular Cascade Machines System and Classical Single Drive Electrical Machine"
IEEE Transactions on Vehicular Technology, Vol. 67, N°. 1, p. 354-361, 1
47ZAHARIA Andreea, BRISSET Stéphane, RADULESCU M. Mircea
"Design of a Brushless DC Permanent Magnet Generator for Use in Micro-Wind Turbine Applications"
International Journal of Applied Electromagnetics and Mechanics (IJAEM), Vol. 56, N°. S1, p. 1, 1,
This paper deals with the optimal design of a direct-driven brushless DC permanent-magnet (BLDCPM) generator over a long-term wind speed cycle operation. Such a large wind speed profile causes long processing time in the search of the optimal solution, therefore a simplification method of the profile based on an original barycenter method is proposed and applied to the power losses computation of the wind energy system. As a result, the optimization methodology relies on two modeling levels different in simulation time and approach and is based on a constrained mono-objective problem with adequate optimization strategy and algorithm that aims at reducing the global system power losses for the given wind speed profile while finding the optimal geometrical and electrical features of the BLDCPM wind generator.
"Dual-Multiphase Motor Drives for Fault-Tolerant Applications: Power Electronic Structures and Control Strategies"
IEEE Transactions on Power Electronics, Vol. 33, N°. 1, p. 572-580, ISBN DOI : 10.1109/TPEL.2017.2766359, 1, url,
This paper analyzes two fault-tolerant dual-multiphase motor drives, a series connected topology and a standard H-bridge topology. Previous studies have shown that the series connected topology is appropriate to an aerospace application and has lower peak current in degraded mode in comparison with the H-bridge topology, which may consequently diminish the system’s weight and cost. This paper extends the study to compare different control strategies of these structures under two fault conditions: short-circuit of an inverter’s switch and an open-phase of the machine. The control strategies analyzed in this paper do not impact the fundamental current or the torque generation, but the amplitudes of some harmonics in degraded mode are expected to be narrowed down in order to reduce the inverter’s size. Some analyses of maximum voltage and peak current in degraded mode have been used for inverter dimensioning. Experimental results are shown and compared to the simulated ones to confirm the validity of this study.
49NGUYEN Thu-Trang, CLENET Stéphane
"Influence of Material and Geometric Parameters on the Sensor Based on Active Materials"
IEEE Transactions on Magnetics, Vol. 54, N°. 3, 1
50DUTRIEUX Héloïse, COSSON Marjorie, BECT Julien, DELILLE Gauthier, FRANCOIS Bruno
"A novel non-intrusive approximation method to obtain fast and accurate multi-period load-flows for distribution network planning"
Electric Power Systems Research, Vol. 154, p. 444-451, 1
"EPE’13 ECCE Europe, a carbon neutral conference!"
EPE Journal, Vol. 28, N°. 1, p. 43-48, 1
1GRUSON François, KADRI Riad, COLAS Frédéric, GUILLAUD Xavier, DELARUE Philippe, BERGÉ Marta, DENNETIERE Sébastien, OULD BACHIR Tarek
"Design, implementation and testing of a Modular Multilevel Converter"
EPE Journal, Vol. 27, N°. 4, 12,
The Modular Multilevel Converter (MMC) is a power electronic structure used for high voltage adjustable speed drives applications as well as power transmission applications and high-voltage direct current (HVDC). MMC structure presents many advantages such as modularity, the absence of a high voltage DC bus and very low switching frequency. It presents also some disadvantages such as modeling complexity and control due to the large number of semiconductors to control. The objectives of this paper are to present the methodology to design a laboratory MMC converter and its control system. This methodology is based on an intensive used of real-time simulation, to develop and test the control algorithm is proposed. This MMC prototype must be as realistic as possible to a full scale MMC, with a large number of SM (i.e. 640kV on the DC side, a rated power of 1GW and 400 sub-modules). A control hardware integrating distributed processors (one for each arm) and a master control is presented. The protocols to validate sub-modules, arms and the converter are explained.
"Vector Control Of Piezoelectric Transducers and Ultrasonic Actuators"
IEEE Transactions on Industrial Electronics, 12,
This paper presents the implementation of a novel vibration amplitude control and resonant frequency tracking for Piezoelectric Transducers (PT) and Ultrasonic Motors (USM). It is based on a generalization of the Vector Control Method (VCM) to PT and USM that is explained in the first part. We show that two independent controllers with similar structure are required : one tracks the resonant frequency and the second controls the amplitude.We then present the implementation into a low cost DSP controller with a 200μsec sampling period. Experimental results on a Langevin Transducer achieved a time response of 20msec approximately, and the generality of the method is further demonstrated on a 2D Tactile stimulator at the end of the paper.
"Generalized Voltage-based State-Space Modelling of Modular Multilevel Converters with Constant Equilibrium Point in Steady-State Operation"
IEEE Journal of Emerging and Selected Topics in Power Electronics, 12
4NGOUA TEU MAGAMBO Jean Sylvio, BAKRI Reda, MARGUERON Xavier, LE MOIGNE Philippe, MAHE Arnaud, GUGUEN Stephane, BENSALAH Taoufik
"Planar Magnetic Components in More Electric Aircraft: Review of Technology and Key Parameters for DC-DC Power Electronic Converter"
IEEE Transactions on Transportation Electrification, Vol. 3, N°. 4, p. 831-842, 12, url,
The More Electric Aircraft (MEA) has motivated aircraft manufacturers since few decades. Indeed, their investigations lead to the increase of electric power in airplanes. The challenge is to decrease the weight of embedded systems and therefore the fuel consumption. This is possible thanks to new efficient power electronic converters made of new components. As magnetic components represent a great proportion of their weight, planar components are an interesting solution to increase the power density of some switching mode power supplies. This paper presents the benefits and drawbacks of high frequency planar transformers in DC/DC converter, different models developed for their design and different issues in MEA context related to planar’s specific geometry and technology.
5EL BECHARI Reda, BRISSET Stéphane, CLENET Stéphane, MIPO Jean-Claude
"Enhanced Meta-model based Optimization under Constraints using Parallel Computations"
IEEE Transactions on Magnetics, 12,
Meta-models proved to be a very efficient strategy for optimization of expensive black-box models, e.g. Finite Element simulation for electromagnetic devices. It enables to reduce the computational burden for optimization purposes. Kriging is a popular method to build meta-model. Its statistical properties were firstly used in efficient global optimization for unconstrained problems. Afterwards many extensions were introduced in the literature to deal with constrained optimization. This paper presents a comparative study of some infill criteria for constraints handling and a new strategy for parallelization of the expensive computations of models.
6DENG Siyang, EL BECHARI Reda, BRISSET Stéphane, CLENET Stéphane
"Iterative Kriging-based Methods for Expensive Black-Box Models"
IEEE Transactions on Magnetics, 12,
Reliability-Based Design Optimization (RBDO) in electromagnetic field problems requires the calculation of probability of failure leading to a huge computational cost in the case of expensive models. Three different RBDO approaches using kriging surrogate model are proposed to overcome this difficulty by introducing an approximation of the objective function and constraints. These methods use different infill sampling criteria (ISC) to add samples in the process of optimization or/and in the reliability analysis. Several enrichment criteria and strategies are compared in terms of number of evaluations and accuracy of the solution.
"The tactile perception of transient changes in friction"
Journal Royal Society Interface, Vol. 14, N°. 20170641, 11, url,
When we touch an object or explore a texture, frictional strains are induced
by the tactile interactions with the surface of the object. Little is known about
how these interactions are perceived, although it becomes crucial for the nascent
industry of interactive displays with haptic feedback (e.g. smartphones
and tablets) where tactile feedback based on friction modulation is particularly
relevant. To investigate the human perception of frictional strains, we
mounted a high-fidelity friction modulating ultrasonic device on a robotic
platform performing controlled rubbing of the fingertip and asked participants
to detect induced decreases of friction during a forced-choice task.
The ability to perceive the changes in friction was found to follow Weber’s
Law of just noticeable differences, as it consistently depended on the ratio
between the reduction in tangential force and the pre-stimulation tangential
force. The Weber fraction was 0.11 in all conditions demonstrating a very
high sensitivity to transient changes in friction. Humid fingers experienced
less friction reduction than drier ones for the same intensity of ultrasonic
vibration but the Weber fraction for detecting changes in friction was not
influenced by the humidity of the skin.
8FREYTES Julian, GILBERT Bergna, JON ARE Suul, SALVATORE D'Arco, GRUSON François, COLAS Frédéric, SAAD Hani, GUILLAUD Xavier
"Improving Small-Signal Stability of an MMC with CCSC by Control of the Internally Stored Energy"
IEEE Transactions on Power Delivery, 11
9TAYLOR Laurent, MARGUERON Xavier, LE MENACH Yvonnick, LE MOIGNE Philippe
"Numerical Modeling of PCB Planar Inductors: Impact of 3-D Modeling on High Frequency Copper Loss Evaluation"
IET Power Electronics, Vol. 10, N°. 14, p. 1966-1974, 11, url,
Loss values are key parameters for designing high performance high frequency (HF) magnetic components for power electronics (PE) converters. With the increase of PE switching frequencies, copper losses have to be precisely quantified, ideally until some megahertz. In the literature, many 2-D numerical simulations based on finite element analysis (FEA) are performed for such computations. 3-D FEA studies of planar components are still limited because of modeling problems, computational resources and computing time. In this paper, quantitative comparisons between 2-D and 3-D simulation results for planar inductors are achieved focusing on copper loss computation. Results are compared in terms of simulation performances and accuracy. The aim of the paper is to highlight benefits of 2-D and 3-D FEA simulations in order to
choose the appropriate model according to the studied problem.
10MARTÍN Cristina, BERMUDEZ GUZMAN Mario, BARRERO Federico, R. ARAHAL Manuel, KESTELYN Xavier, DURAN Mario
"Sensitivity of predictive controllers to parameter variation in five-phase induction motor drives"
Control Engineering Practice, Vol. 68, p. 23-31, ISBN DOI: 10.1016/j.conengprac.2017.08.001, 11, url,
Model predictive control techniques have been recently proposed as a viable control alternative for power converters and electrical drives. The good current tracking, flexible control design or reduced switching losses are some of the benefits that explain the recently increased attention on finite-control-set model predictive control. The performance of the predictive model of the drive, which is the core of the predictive control, highly depends on the parameters of the real system. In this context, most research works assume good agreement between electrical parameters of the predictive model and the real machine, on the basis of nominal values. Nevertheless, this is far from being a real assumption, where non-modeled variables (i.e. the temperature, the magnetic saturation or the deep-bar effect) produce a detuning effect between the real system and its model, which can harm the control performance. The influence of parameter variations on the predictive control has barely been investigated in recent research works, where only conventional three-phase power converter configurations and permanent magnet drives have been taken into account. However, there is a lack of knowledge when different technologies like induction machines or multiphase drives are considered. It is worth highlighting the interest of the industry in induction motors as a mature technology or in multiphase drives as a promising alternative in applications where high overall system reliability and reduction in the total power per phase are required. This paper attempts to fill this gap by examining the impact of parameters mismatch on the finite-control-set predictive control performance of a five-phase induction motor drive, one of the multiphase electromechanical conversion systems with greatest impact in the research community. An exhaustive experimental sensitivity analysis of the close loop system performance based on more than three hundred trials in a test bench is presented.
11BELGRAND Thierry, LEMAITRE Régis, BENABOU Abdelkader, BLASZKOWSKI Jonathan, WANG Chaoyong
"Thin grain oriented electrical steel for PWM voltages fed magnetic cores"
AIP Advances, Vol. 8, N°. 047611, 11, url,
This paper reports on performances of high permeability grain oriented electrical steel when used in association with power electronic switching devices. Loss measurement results obtained from the Epstein test, using sinusoidal or various PWM voltages in medium frequency range, show that for both studied thicknesses (HGO 0.23mm and HGO 0.18mm), comparing performances at a fixed induction level between the various situations may not be the most convenient method. The effect of magnetic domain refinement has been investigated. After having shown the interest of lowering the thickness, an alternative way of looking at losses is proposed that may help to design the magnetic core when it comes to the matter of reducing size in considering frequency and magnetization levels.
12AMAMRA Sid-Ali, MEGHRICHE Meghriche, CHERIFI Abderrezzak, FRANCOIS Bruno
"Multilevel Inverter Topology for Renewable Energy Grid Integration"
IEEE Transactions on Industrial Electronics, Vol. 64, N°. 11, 11
13ZHANG Jian, TOUNZI Abdelmounaïm, DELARUE Philippe, PIRIOU Francis, LEONTIDIS Vlasios, DAZIN Antoine, CAIGNAERT Guy, LIBAUX Antoine
"Quantitative Design of a High Performance Permanent Magnet Vernier Generator"
IEEE Transactions on Magnetics, Vol. 53, N°. 11, 11
"Energy Savings of a Hybrid Truck using a Ravigneaux Gear Train"
IEEE Transactions on Vehicular Technology, Vol. 66, N°. 10, p. 8682 - 8692, 10
"Simulation of a large power Brushless Synchronous Generator (BLSG) with a rotating rectifier by a reluctance network for fault analysis and diagnosis"
IEEE Transactions on Industry Applications, Vol. 53, N°. 5, 10,
Abstract -- The aim of this paper is to simulate a large power brushless synchronous generator (BLSG) used for large turbo-alternator brushless excitation systems, under conditions of saturation and rotating rectifier diode failures. A reluctance network coupled with electric circuits and power electronic components integrating the movement and nonlinearities of materials has been developed. The approach achieves good compromise between accuracy and computing time for the complete analysis of a 39 phase machine with 117 teeth and 22 poles, and 78 diodes in the associated rectifier bridge. Our model is validated by comparison with experimental measurements and numerical simulation by a finite element package. For the simulations presented, a gain in computation time of 800 can be obtained compared with a finite element model. Different results are calculated for healthy and faulty states to study the impact of open diode block failure. Simulation results show that open diode failures have little effect on the rectified output voltage but the current through diodes and protection fuses increases. The currents in armature phase coil are very affected due to failures. A flux sensor coil can be placed on the stator pole to capture the impact of failures. The harmonic content of the pole flux can be used to monitor and detect diode failures.

Index Terms-- Reluctance network, rotating rectifier, diodes, saturation, fault analysis, fault detection.
16BRISSET Stéphane, OGIER Maxime
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 10,
Three approaches are proposed for the design of a hybrid railway power substation taking into account the control of the storage system over one year. The first one is based on a piecewise linearization of the cost function and solved with linear programming. The others decompose the whole problem in two levels with lower dimensionality. Collaborative optimization solves it with a double-loop scheme while Benders decomposition allows a sequential resolution. This last gives the same solution as linear programming in about 5 times more computing time and can be used with a non-linear cost function.
17MONTIER Laurent, HENNERON Thomas, CLENET Stéphane, GOURSAUD Benjamin
"Robust Model Order Reduction of an Electrical Machine at Startup through Reduction Error Estimation"
International Journal of Numerical Modelling, 9
"Characterization of the Electric Drive of EV: On-road versus Off-road Method"
IET Electrical Systems in Transportation, Vol. 7, N°. 3, p. 215-222, 8
"Hardware-In-the-Loop Simulation of Traction Power Supply for Power Flows Analysis of Multi-Train Subway Lines"
IEEE Transactions on Vehicular Technology, Vol. 66, N°. 7, p. 5564-5571, 7,
Multi-train systems are complex to study due to the size of the system and its specificities. To tackle these difficulties, this paper develops a reduced-scale power Hardware-In-the-Loop (HIL) simulation dedicated to subway lines emulations. Energetic Macroscopic Representation (EMR) is used to organize the HIL simulation. A first mono-train HIL simulation is developed and validated by experimental results. The HIL simulation is then extended to a two-train study to analyze the different power flows between subsystems.
20FARZAM FAR Mehrnaz, BELAHCEN Anouar, RASILO Paavo, CLENET Stéphane, PIERQUIN Antoine
"Model order reduction of electrical machines with multiple inputs"
IEEE Transactions on Industry Applications, Vol. 53, N°. 4, p. 3355-3360, 7
"Impact of heating system on the range of an electric vehicle"
IEEE Transactions on Vehicular Technology, Vol. 66, N°. 3, p. 4668 - 4677, 6,
For an accurate evaluation of the driving range of an Electric Vehicle (EV), many conditions must be considered (road profile, traffic influence, etc.). However cabin heating system is not often considered despite its significant impact. In this paper, the impact of the cabin heating system is studied on the driving range of an EV. A real EV is used as a reference. A multi-domain model is developed and validated by experimental results on the vehicle. From this validated model, the impact of the heating system on the range is evaluated up to 30% in cold climatic conditions. In a classical approach, an eco-driving mode enables an increase in the range by reducing the vehicle acceleration and velocity. When considering the heating system, the energy balance is more complex: the eco-driving mode can lead to an over-consumption of energy. A better compromise is required as a function of the climatic condition
"Dynamical Modeling and Emulation of Li-Ion Batteries/Supercapacitors Hybrid Power Supply for Electric Vehicle Applications"
IET Electrical Systems in Transportation, 6,
Modeling dynamic behaviors of the Li-ion battery and supercapacitor in electric vehicle applications is a key aspect for the emulation of the hybrid power supply. In this paper, a dynamical model based on two nonlinear equivalent circuits is developed to describe the characteristics of the battery and supercapacitor during both steady-state and transient conditions. The necessary parameters for proposed model are extracted from measurement data in time and frequency-domain using an optimization algorithm. The developed model is coupled to power electronics devices fed by DC power supply to carry out a laboratory emulator of the hybrid power supply. This tool is mainly used for testing and verification of the electric vehicle performances with convenient and reproducible way. The proposed emulator avoids time-consuming preconditioning and safety problems generally caused by the misuse of electrochemical components such as the Li-ion battery. The modeling and experimental results show a good performance of the hybrid power supply emulator and confirm their feasibility over a wide range of operating points.
23LIU Mingyong, TANG Zuqi, MININGER Xavier, BOUILLAULT Frédéric, HUBERT Olivier, BERNARD Laurent
"Modeling of Magnetic-Induced Deformation Using Computer Code Chaining and Source-Tensor Projection"
IEEE Transactions on Magnetics, Vol. 53, N°. 6, p. 1–4, 6, url,
Source tensor projections are developed for the magneto-elastic coupled problems when magnetostriction-induced force and magnetic force are considered. Comparisons with classical force density projection are first performed on a simple example. Then, it is investigated on an application of a multilayer transformer core with the consideration of material anisotropy and multilayer inhomogeneity.
24FRATILA Mircea, BENABOU Abdelkader, TOUNZI Abdelmounaïm, DESSOUDE Maxime
"Iron Loss Calculation in a Synchronous Generator Using Finite Element Analysis"
IEEE Transactions on Energy Conversion, Vol. 32, N°. 2, p. 640 - 648, 6, url,
This paper deals with the calculation of iron losses in a turgenerator using a magnetodynamic Finite Element (F.E.) Analysis accounting for the eddy currents in the damper bars. Two iron loss models, based on the Berttoti’s decomposition approach, are compared in the post-processing step of a F.E. calculation. The numerical model of the studied system is validated by comparing the calculation and the experiment for no-load conditions.
25SATHYAN Sabin, BELAHCEN Anouar, JUHANI Kataya, HENROTTE François, BENABOU Abdelkader, LE MENACH Yvonnick
"Computation of Magnetic Forces Using Degenerated Airgap Element"
IEEE Transactions on Magnetics, Vol. 53, N°. 6, p. 7401304, 6, url,
This paper presents an efficient method to calculate the magnetic forces on bodies in contact. The forces are computed through the local application of the virtual work principle on degenerated air-gap elements. The results from this method are compared with those from other software and validated with measurements on a permanent magnet setup. Not only is this technique very accurate, but it also reduces the computational burden related to the problematic meshing of thin layers. The implementation of this method in an open source finite element software having facilities for higher order elements and parallel computation unlocks a cost effective and effectual platform for an electromechanical computation of electromechanical devices and magnetic materials.
26CHEAYTANI Jalal, BENABOU Abdelkader, TOUNZI Abdelmounaïm, DESSOUDE Maxime
"Stray load losses analysis of cage induction motor using 3-D finite element method with external circuit coupling"
IEEE Transactions on Magnetics, Vol. 53, N°. 6, p. 8202104, 6, url,
The stray load losses in electrical machines represent a non-negligible contribution of the total losses and are a key point for an accurate evaluation of the energy efficiency of the considered device. In this paper, a methodology using the 3-D finite-element (FE) modeling approach and a posteriori loss calculation is presented for the estimation of the stray load losses. The case of a cage induction motor is investigated, and results are compared with the experiment. The simulation is performed at different load conditions using a 3-D FE model with external circuit coupling.
27MONTIER Laurent, CLENET Stéphane, HENNERON Thomas, GOURSAUD Benjamin
"Rotation movement based on the Spatial Fourier Interpolation Method (SFIM)"
IEEE Transactions on Magnetics, Vol. 53, N°. 6, 6,
In the field of computational electromagnetics, taking into account the rotation of a sub-domain is required to simulate certain devices such as electrical machines. Several methods have been proposed in the literature, but they remain quite difficult to implement. In this paper, we propose a sliding surface method based on a spatial Fourier interpolation in order to take into account any rotation angle with a very simple numerical implementation.
28MONTIER Laurent, PIERQUIN Antoine, HENNERON Thomas, CLENET Stéphane
"Structure Preserving Model Reduction of Low Frequency Electromagnetic Problem based on POD and DEIM"
IEEE Transactions on Magnetics, Vol. 53, N°. 6, 6,
The Proper Orthogonal Decomposition (POD) combined with the (Discrete) Empirical Interpolation Method (DEIM) can be used to reduce the computation time of the solution of a FE model. However, it can lead to numerical instabilities. To increase the robustness, the POD_DEIM model must be constructed by preserving the structure of the full FE model. In this article, the structure preserving is applied for different potential formulations used to solve electromagnetic problems.
29HENNERON Thomas, MONTIER Laurent, PIERQUIN Antoine, CLENET Stéphane
"Comparison of DEIM and BPIM to Speed up a POD-based Nonlinear Magnetostatic Model"
IEEE Transactions on Magnetics, Vol. 53, N°. 6, 6,
Proper Orthogonal Decomposition (POD) has been successfully used to reduce the size of the equation system and the computation time of linear Finite Element (FE) problems. With a nonlinear behavior law, the POD is not so efficient due to the computation cost of nonlinear entries of the full FE model. Then, the POD approach must be combined with an interpolation method of nonlinear terms to obtain an efficient reduced model. An interpolation method consists on the computation of a small number of nonlinear entries and on the interpolation of other terms. Different methods have been presented to select the set of nonlinear entries to be calculated. Then, the (Discrete) Empirical Interpolation method ((D)EIM) and the Best Points Interpolation Method (BPIM) have been developed. In this article, we propose to compare two reduced models based on the POD-(D)EIM and on the POD-BPIM in the case of nonlinear magnetostatics coupled with electric equation.
30YAN Xingyu, ABBES Dhaker, FRANCOIS Bruno
"Uncertainty analysis for day ahead power reserve quantification in an urban microgrid including PV generators"
Renewable Energy, Vol. 106, p. 288–297, 6, url,
Setting an adequate operating power reserve (PR) to compensate unpredictable imbalances between generation and consumption is essential for power system security. Operating power reserve should be carefully sized but also ideally minimized and dispatched to reduce operation costs with a satisfying security level. Although several energy generation and load forecasting tools have been developed, decision-making methods are required to estimate the operating power reserve amount within its dispatch over generators during small time windows and with adaptive capabilities to markets, as new ancillary service markets. This paper proposes an uncertainty analysis method for power reserve quantification in an urban microgrid with a high penetration ratio of PV (photovoltaic) power. First, forecasting errors of PV production and load demand are estimated one day ahead by using artificial neural networks. Then two methods are proposed to calculate one day ahead the net demand error. The first perform a direct forecast of the error, the second one calculates it from the available PV power and load demand forecast errors. This remaining net error is analyzed with dedicated statistical and stochastic procedures. Hence, according to an accepted risk level, a method is proposed to calculate the required PR for each hour.
"Optimal Energy Management For a Li-Ion Battery/Supercapacitor Hybrid Energy Storage System Based on Particle Swarm Optimization Incorporating NelderMead Simplex Approach"
IEEE Transactions on Intelligent Vehicles, 6, url,
Combining a high power source like a supercapacitor with a Li-ion battery for electric vehicle applications results in good performance improvements, highly efficient, long lifetime, lightweight design and relatively modest cost of the overall source. A hybrid energy storage system controlled by a smart energy management strategy can play a key role in the design and development of multi-source electric vehicles. In this work, an optimal energy management strategy based on particle swarm optimization incorporating Nelder-Mead simplex method is proposed. The goal of the proposed strategy is to minimize the battery power stress and improves its lifetime. This is achieved by coupling a rule-based method based on the knowledge of the battery and supercapacitor efficiency operating with a hybrid Particle Swarm–Nelder–Mead (PSO–NM) optimization algorithm. This latter approach is proposed to optimize the control parameters of the rule-based energy management strategy, once the off-line optimization algorithm is over, the control method can be implemented on-line. The obtained results demonstrate significant lifetime enhancements for Li-Ion battery, an increase of up to 20% as compared to the mono-source based on regular single battery.
"Friction Reduction through Ultrasonic Vibration Part 2: Experimental Evaluation of Intermittent Contact and Squeeze Film Levitation"
IEEE Transactions on Haptics, Vol. 10, N°. 2, p. 208-216, ISBN 1939-1412, 6, url,
In part 1 of the current study of haptic displays, a finite element (FE) model of a finger exploring a plate vibrating out-of-plane at ultrasonic frequencies was developed as well as a spring-frictional slider model. It was concluded that the reduction in friction induced by the vibrations could be ascribed to ratchet mechanism as a result of intermittent contact. The relative reduction in friction calculated using the FE model could be superimposed onto an exponential function of a dimensionless group defined from relevant parameters. The current paper presents measurements of the reduction in friction, involving real and artificial fingertips, as a function of the vibrational amplitude and frequency, the applied normal force and the exploration velocity. The results are reasonably similar to the calculated FE values and also could be superimposed using the exponential function provided that the intermittent contact was sufficiently well developed, which for the frequencies examined correspond to a minimum vibrational amplitude of - 1 μm P-P. It was observed that the reduction in friction depends on the exploration velocity and is independent of the applied normal force and ambient air pressure, which is not consistent with the squeeze film mechanism. However, the modelling did not incorporate the influence of air and the effect of ambient pressure was measured under a limited range of conditions, Thus squeeze film levitation may be synergistic with the mechanical interaction.
33VEZZOLI Eric, VIDRIH Zlatko, GIAMUNDO Vincenzo, LEMAIRE-SEMAIL Betty, GIRAUD Frédéric, RODIC Tomaz, PERIC Djordje, ADAMS Michael
"Friction Reduction through Ultrasonic Vibration Part 1: Modelling Intermittent Contact"
IEEE Transactions on Haptics, Vol. 10, N°. 2, p. 196-207, ISBN 1939-1412, 6, url,
Ultrasonic vibration is employed to modify the friction of a finger pad in way that induces haptic sensations. A combination of intermittent contact and squeeze film levitation has been previously proposed as the most probable mechanism. In this paper, in order to understand the underlying principles that govern friction modulation by intermittent contact, numerical models based on finite element (FE) analysis and also a spring-Coulombic slider are developed. The physical input parameters for the FE model are optimized by measuring the contact phase shift between a finger pad and a vibrating plate. The spring-slider model assists in the interpretation of the FE model and leads to the identification of a dimensionless group that allows the calculated coefficient of friction to be approximately superimposed onto an exponential function of the dimensionless group. Thus, it is possible to rationalize the computed relative reduction in friction being (i) dependent on the vibrational amplitude, frequency, and the intrinsic coefficient of friction of the device, and the reciprocal of the exploration velocity, and (ii) independent of the applied normal force, and the shear and extensional elastic moduli of the finger skin provided that intermittent contact is sufficiently well developed. Experimental validation of the modelling using real and artificial fingertips will be reported in part 2 of this work, which supports the current modelling.
34LEFORT Romain, VAUZELLE Rodolphe, COURTECUISSE Vincent, IDIR Nadir, POUSSARD Anne-Marie
"Influence of the MV/LV transformer impedance on the propagation of the PLC signal in the power grid"
IEEE Transactions on Power Delivery, Vol. 31, N°. 3, p. 1339 - 1349, ISBN 0885-8977, 6,
Improving the operation of power grid and offering new smart applications, the deployment of a supervisory infrastructure is necessary. One solution to transmit data may be based on the Power Line Communication (PLC) technology. It consists in the superposition of the high frequency signals with the electrical signal 50/60 Hz. However, the power grids have not been designed to operate in high frequencies. Therefore, they provide a transmission channel with difficult propagation conditions. This paper deals with the modeling of the MV/LV power transformers in PLC frequencies. The proposed models are based on “lumped model” and “black box model”. They are performed in frequency band from 1 kHz to 1 MHz on SPICE and MATLAB softwares respectively. These models are based on impedance measurements and validated by experimental data. The advantages and drawbacks of each model are detailed from the presentation of modeling method and simulation results. The comparison of the simulation results show that “black box model” offers a good accuracy. The transmission results show that transformers are an important element in PLC studies because it provides significant losses. Moreover, these losses depend mainly on the values of the impedance terminals of MV/LV transformer.
"Thermal Topology Optimization of a Three-Layer Laminated Busbar for Power Converters"
IEEE Transactions on Power Electronics, Vol. 32, N°. 6, p. 4691-4699, 6,
This paper focuses on a topology optimization method for laminated busbars in power converters that minimizes the quantity of copper used while keeping the temperature under the allowed limits. Busbars are widely studied for adding their stray inductance to the commutation loop, which causes surge voltage across the power devices. However, the study of heat dissipation is essential to control hotspots in the busbar and preserve the converter components. Current density and temperature are sensitive to shape modifications; hence, topology optimization based on multiphysics simulations is an aspect to be considered when designing prototypes for a good cost performance ratio. The temperature is calculated by an electrothermal two-dimensional (2-D) finite element method (FEM) superposition approach. Busbar plates are modeled in 2-D since the thickness is constant. Furthermore, the different layers are related by the thermal equations reproducing the heat transfers regarding the overlap in the laminated busbar. Simulation results are validated by experimental tests. Comparison with 3-D FEM proves the 2-D approach to be faster while remaining accurate and a perfect method for topology optimization resolutions, which are very time consuming for three-dimensional (3-D) geometries. The busbar topology optimization is made by maximizing the energy transfer with the environment and by varying the electric and thermal conductivities of the mesh elements. Optimization leads to more than 50% volume reduction.
36RIZOUG Nassim, SADOUN Rehda, MESBAHI Tedjani, BARTHOLOMEUS Patrick, LE MOIGNE Philippe
"Aging of High power Li-ion cells during real use of electric vehicles"
IET Electrical Systems in Transportation, 4,
Currently, the vehicle manufacturers use the high power Li-ion technology to supply the electric and hybrid vehicles. This technology is able to ensure the power needed to propel the vehicle. Until now several studies have been made by the laboratories and manufacturers to characterize this technology. The aim of these test (electric, thermal, aging,…) is to make comparison between Li-ion technologies and choice the best one for each application. For that, they use accelerated cycling with different condition to characterize cells, what can reduce the tests duration. Unfortunately, this type of cycle can’t give us information about the aging of HP Li-ion technology under real use of the vehicle. Firstly, the requirements specification (vehicle specification, battery technologies, mission) has been presented. After that, we will present the test bench developed in our laboratory to characterize batteries and study the aging of the HP technology. In this paper we present the study of the Li-ion HP behavior during almost 3 years and the modelling (electric, thermal and aging modelling) using a real driving cycle. The experimental results are compared to the results obtained with the developed ageing model. The obtained results prove the good performances of this technology in electric vehicle applications.
37MONTIER Laurent, HENNERON Thomas, GOURSAUD Benjamin, CLENET Stéphane
"Balanced Proper Orthogonal Decomposition Applied to Magnetoquasistatic Problems Through a Stabilization Methodology"
IEEE Transactions on Magnetics, 4
"PWM Strategy for the Cancellation of Common-Mode Voltage Generated by Three-Phase Back-to-Back Inverters"
IEEE Transactions on Power Electronics, Vol. 32, N°. 4, p. 2675-2686, 4, url,
This paper presents a PWM strategy for the cancellation of common-mode (CM) voltage generated by three-phase back-to-back two-level inverters. This method theoretically provides complete elimination of the CM voltage by synchronizing all the commutations of one converter with commutations of the other one, so that the overall resulting CM voltage does not vary. The degrees of freedom of this strategy are studied and an experimental implementation is carried out on a 15kW motor drive prototype to validate the method effectiveness. Taking into account dead-time compensation, measurements in time and frequency domains show that the CM voltage is strongly reduced and that more than 15dB reduction is achieved in a wide frequency range.
39ARBENZ Laure, BENABOU Abdelkader, CLENET Stéphane, MIPO Jean-Claude, FAVEROLLE Pierre
"Characterization of the Local Incremental Permeability of a Ferromagnetic Plate Based on a Four Needles Technique"
IEEE Transactions on Magnetics, Vol. 53, N°. 3, 3, url,
The performances of electrical machines depend highly on the behavior of ferromagnetic materials. In some applications, these materials operate under DC polarization, i.e. when the magnetic field oscillates around a DC bias. In that condition, it is required to know the incremental permeability which characterizes the magnetic behavior of the material around the operating point. In this paper, a non-destructive approach, involving a combination of experiment and Finite Element (FE) technique, is presented in order to determine the incremental permeability. The proposed sensor is based on the four-needles method. With this sensor, Bowler et al. have proposed a method to determine the initial permeability of homogeneous metal plates based on an analytical model. Here we propose to use the same kind of sensor to determine the incremental permeability. The measurement process is analyzed using a FE model. It is shown that the analytical approach reaches its limits if the permeability of the plate and its thickness become too high. A combination between the measurements and a FE model is introduced to overcome this difficulty to determine the incremental permeability. The study of two magnetic steel samples illustrates the interest of this method.
40CARON Guillaume, HENNERON Thomas, PIRIOU Francis, MIPO Jean-Claude
"Waveform relaxation-Newton method to determine steady state: application to three-phase transformer"
The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. 36, N°. 3, p. 729-740, 3,
To determine the steady state of an electromagnetic structure with the finite element method without calculation of the transient state. The proposed method permits to reduce the computation time if the transient state is important. In the case of coupling magnetic and electric circuit equations to obtain the steady state with periodic conditions, an approach can be to discretise the time with periodic conditions and to solve the equation system. Unfortunately, the computation time can be prohibitive. In this paper, the authors proposed to use the waveform relaxation method associated to Newton method to accelerate the convergence. The obtained results show that the proposed approach is efficient if the transient state is important. On the contrary, if the transient is very low it is preferable to use the classical approach namely the time stepping finite element method. The main limitation of the proposed approach is the necessity to evaluate or to know the time constant and consequently the duration of the transient state. Moreover the method requires some important memory resources. In the context of the use of the time stepping finite element method, one of the problems is the computation time which can be important to obtain the steady state. The proposed method permits avoidance of this difficulty and gives directly the steady state. The novelty is the proposal of the waveform relaxation Newton method to obtain directly the steady state in the case of the study of the three phases transformer
"On the Backstepping Approach for VSC-HVDC and VSC-MTDC Transmission Systems"
Electric Power Components and Systems - Taylor & Francis, Vol. 45, N°. 5, p. 520-533, ISBN 1532-5008, 3, url,
This article presents a backstepping control design strategy for the voltage source converter (VSC)-based high-voltage direct current (HVDC). First, a dynamic model is derived based on the state
space description. Subject to the backstepping control design proce-
dure strategy, a non-linear control scheme is developed in the sense
of Lyapunov stability theory in order to satisfy various objectives of
a stable HVDC system and guarantee a grid connection with a unity
power factor. Then, the proposed control method is extended for
multi-terminal (MT) HVDC transmission systems based on VSCs. In
order to improve the dynamic behavior of the controlled DC bus volt-
age and the stability of MTDC systems, a backstepping control strat-
egy accorded to each VSC is proposed and integrated into the voltage
droop control strategy. The designed advanced controller allows to
improve the overall DC grid stability and to reach the droop values,
designed on static considerations, with satisfying dynamic behavior.
Compared to the conventional control, the use of a backstepping con-
trol allows to exhibit excellent transient response over a wide range
of operating conditions.
"Open-Phase Fault-Tolerant Direct Torque Control Technique for Five-Phase Induction Motor Drives"
IEEE Transactions on Industrial Electronics, Vol. 64, N°. 2, p. 902-911, ISBN DOI: 10.1109/TIE.2016.2610941, 2, url,
Direct torque control (DTC) has been widely used as an alternative to traditional field-oriented control (FOC) methods for three-phase drives. The conventional DTC scheme has been successfully extended to multiphase drives in recent times, using hysteresis regulators to independently track the desired torque and flux in symmetrical five-phase induction machines (IM). The fault-tolerant capability of multiphase drives is an interesting intrinsic advantage for safety-critical applications, where recent research has demonstrated the effectiveness of FOC schemes to perform ripple-free post-fault operation. In spite of the utility of DTC methods in normal operation of the multiphase machine, no extension to manage the post-fault operation of the drive is found in the literature. In this paper, a novel fault-tolerant DTC scheme is presented. The performance of the proposed method is experimentally validated in a five-phase IM drive considering an open-phase fault condition. Provided tests analyze steady and transient states, including the transition from pre- to post-fault operation. Obtained results prove the interest of the proposal, which ensures the open-phase fault-tolerant capability of DTC controlled five-phase IM drives.
"Real time electrical power estimation for the energy management of automatic metro lines"
Mathematics and Computers in Simulation, Vol. 131, p. 3-20, 1,
This paper intends to present a methodology to maximise reuse of regenerative braking energy in automatic
metro lines for both offline and real time energy management. It first describes optimisation
techniques for scheduling energy efficient timetables, while considering a no-fluctuation operating mode, as
it corresponds to the most dominant operating case. Impact of headway and dwell time management on
regenerative braking recovery are especially examined with a multi-criteria fitness function. Then, iterative
solving techniques are introduced to precisely quantify energy transfers between trains. A neural estimator
of trains power consumption is also proposed to meet real time requirements. Simulation results based on
experiments conducted on Torino metro line are exposed to evaluate the performance of this estimator.
"Methodology for technical and economic assessment of electric vehicles integration in distribution grid"
Mathematics and Computers in Simulation, Vol. 131, p. 172-189, 1,
This paper proposes a methodology to design a supervision system (SS) based on Fuzzy and Boolean logics. In the first stage, a graphical modeling tool is used to facilitate the analysis and the determination of Fuzzy–Boolean algorithm linked to the test system. To improve the performance of the proposed SS a genetic algorithm (GA) is implemented in the second stage. The SS objective is used to control electric vehicles (EVs) load in order to minimize the energy transmission costs (ETC) of the distribution system operator (DSO). To achieve this goal, it is necessary to promote local consumption of wind and photovoltaic (PV) power by coordinating them with EVs load, maximize EVs charging during cheaper energy periods and reduce subscribed power exceeding.
The performance of the SS is shown by numerical simulation results using Matlab/Simulink. Finally, a Matlab–PowerFactory
co-simulation framework is proposed in order to assess supervision system influence on the technical aspects of a real test grid.
45SHINODA Kosei, GUILLAUD Xavier, BACHA Seddik, BENCHAIB Abdelkrim, FRANCOIS Bruno
"Modelling of a VSC-based multi-terminal HVDC network for dynamic stability analysis"
The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. 36, N°. 1, p. 240 - 257, 1,
Self-commuted voltage source converter (VSC) can significantly extend the flexibility and operability of an HVDC system and be used to implement the concept of multi-terminal HVDC (MTDC) grid. To take full advantage of MTDC systems, its overall behaviour must be characterized in quasi static and dynamic states. Based on the numerous literatures, a dedicated two-level VSC model and its local controllers and DC grid voltage regulators are developed for this purpose. Furthermore, the requirement of the system to guarantee all the physical constrains must be well assessed and concrete demonstrations must be provided by numerical simulations.

First, a two-level VSC model and its local controllers and DC grid voltage regulators are developed. Then, DC cable models are investigated and their characteristics are assessed in the frequency domain. Those developed models are combined to form a three-terminal HVDC grid system on Matlab/Simulink platform. To analyze the stability of this electrical system, the dynamics of the system against variations of power dispatch are observed.

To analyze the stability of this electrical system, the dynamics of the system against variations of power dispatch are observed. The differences in the DC grid voltage dynamics and the power flow of the converter stations coming from the embedded primary controls are analysed, and the technical requirements for both cases are assessed.

In this paper, the dynamic stability of an MTDC system has been analysed and assessed through an adequate simulation model, including its control scheme and the cable models. The interest of the improved PI model for cables is highlighted.
46HOANG Trung-Kien, VIDO Lionel, GABSI Mohamed, GILLON Frédéric
"Flux control range broadening and torque ripple minimization of a double excitation synchronous motor"
IEEE Transactions on Magnetics, Vol. 53, N°. 1, p. 1-10, 1,
This paper presents performance improvements of a double excitation synchronous motor by using a reluctance network (RN).
The distinguishing feature of the double excitation principle is to use permanent magnets with high energy, while air-gap flux is
flexibly controlled by field windings. Therefore, the first contribution of this paper focuses on maximizing air-gap flux range control. Second, an approach for torque ripple reduction is proposed by directly modifying air-gap flux according to the instantaneous torque profile. The achieved resultant torque stays almost constant for a case study. The validity of the RN method is examined by comparisons with 3-D finite element and experimental results for several machines.
"Combined Optimal Sizing and Control of Li-Ion Battery/Supercapacitor Embedded Power Supply Using Hybrid Particle Swarm-Nelder-Mead Algorithm"
IEEE Transactions on Sustainable Energy, Vol. 8, N°. 1, p. pp.59-73, 1, url,
This paper examines and optimizes parameters that affect the sizing and control of a hybrid embedded power supply composed of Li-ion batteries and supercapacitors in electric vehicle applications. High demands including power and energy density, low charge/discharge power stress on the battery (long lifetime), lightweight design and relatively modest cost at the same time cannot be provided solely by batteries or supercapacitors. For this reason, we propose the use of a Li-ion battery/supercapacitor hybrid embedded power supply for an urban electric vehicle. The sizing process of this system including the optimization of the power sharing is done thanks to a developed hybrid Particle Swarm–Nelder–Mead (PSO–NM) algorithm involving multi-objective optimization. This approach also allows us to optimize the proposed energy management strategies based on frequency rule-based control and different ways of supercapacitors energy regulation. Obtained results show that the hybrid embedded power supply with the proposed control strategies is able to offer the best performances for the chosen electric vehicle in terms of weight, initial cost and battery lifetime.
1BUZILA-PANKOVITS Petronela, ABBES Dhaker, SAUDEMONT Christophe, BRISSET Stéphane, POUGET Julien, ROBYNS Benoît
"Multi-criteria fuzzy-logic optimized supervision for hybrid railway power substations"
Mathematics and Computers in Simulation, Vol. 130, p. 236-250, 12,
Renewable energy sources and storage units’ integration in the railway power substations is an alternative solution to handle
the energy consumption, due to railway traffic increase and electricity market liberalization. To integrate this technology change in the railway network, an adapted energy management system has to be established. However, when considering only energy efficiency aspects on the energy management strategy, an economical viable solution cannot be ensured. This paper proposes a supervision strategy based on multi-criteria approach including energetic, environmental and economic constraints. The energy management objectives such as reducing the network power demand, favoring local renewable consumption and ensuring storage availability are treated in different time levels. Economic aspects are first integrated in predictive mode based on forecast data.
Then a supervision strategy is developed based on fuzzy logic approach and graphical tool to build it. An optimization study of
the supervision strategy is proposed in order to conclude on system performance. Simulation results are discussed for different scenarios cases and the reaction of the hybrid railway power substation is detailed. Results show that this methodology can be successfully applied for hybrid systems energy management in order to improve their energy efficiency.
"Influence of the heating system on the fuel consumption of a hybrid electric vehicle"
Energy Conversion and Management, Vol. 129, p. 250–261, 12,
This research work aims to study the impact of the heating system on the fuel consumption of a hybrid electric vehicle (HEV). The thermal engine is less used in an HEV than in a thermal vehicle, thus the cabin heating is partly ensured by electrical resistances. However, because the battery is partly charged by the thermal engine, this electrical heating has an impact on the fuel consumption. In the present work, a multi-domain model is proposed to analyze the impact of the heating system on the fuel consumption of a HEV. The models of the different physical subsystems are organized and unified by energetic macroscopic representation (EMR). Experimental validations, with an accuracy of 95%, are provided for each subsystem model. The validated simulation models are used to study the impact of the heating system for a specific driving cycle and climatic condition. For a simple energy management strategy (EMS), there is an over-consumption of 19% that is due to the heating system. When a more efficient EMS is used, the over-consumption is reduced to 12%. This study shows the interest in developing advanced energy management strategies that couple the traction and the heating functions of the vehicle.
"Adaptive Energy Management System Based on a Real-Time Model Predictive Control With Nonuniform Sampling Time for Multiple Energy Storage Electric Vehicle"
IEEE Transactions on Vehicular Technology, 12,
The performance of a dual energy storage electric vehicle system mainly depends on the quality of its power and energy managements. A real-time management strategy supported by a Model Predictive Control using the non-uniform sampling time concept is developed and fully addressed in this paper. First, the overall multiple energy storage powertrain model including its inner control layer is represented with the Energetic Macroscopic Representation and used to introduce the energy strategy level. The model of the system with its inner control layer is translated into the state space domain in order to develop a Model Predictive Control approach. The management algorithm based on mixed short- and long-term predictions is compared to rule-based and constant sampling time Model Predictive Control strategies in order to assess its performance and its ability to be used in a real vehicle. The real-time simulation results indicate that, compared to other strategies, the proposed Model Predictive Control strategy can balance the power and the energy of the dual energy storage system more effectively, and reduce the stress on batteries. Moreover, battery and supercapacitor key variables are kept within safety limits, increasing the lifetime of the overall system.
4AISSOU Riad, REKIOUA Toufik, REKIOUA Djamila, TOUNZI Abdelmounaïm
"Robust nonlinear predictive control of permanent magnet synchronous generator turbine using Dspace hardware"
International Journal of Hydrogen Energy, Vol. 41, N°. 45, p. 21047-21056, 12
5AISSOU Riad, REKIOUA Toufik, REKIOUA Djamila, TOUNZI Abdelmounaïm
"Application of nonlinear predictive control for charging the battery using wind energy with permanent magnet synchronous generator"
International Journal of Hydrogen Energy, Vol. 41, N°. 45, p. 20964-20973, 12
6ZAHR Hussein, GONG Jinlin, SEMAIL Eric, SCUILLER Franck
"Comparison of optmized Control Strategies of a Bi-harmonic five-phase Electrical Machine for Traction high speed range"
Energies, Vol. 9, N°. 12, p. 952, 11, url,
The purpose of the paper is to present the potentialities in terms of the control of a new kind of PM synchronous machine. With five phases and electromotive forces whose first ( ) and third ( ) harmonics are of similar amplitude, the studied machine, so-called bi-harmonic, has properties that are interesting for traction machine payload. With three-phase machines, supplied by a mono-harmonic sinusoidal current, the weak number of freedom degrees limits the strategy of control for traction machines especially when voltage saturation occurs at high speeds. As the torque is managed for three-phase machines by a current with only one harmonic, flux weakening is necessary to increase speed when the voltage limitation is reached. The studied five-phase machine, thanks to the increase in the number of freedom degrees for control, aims to alleviate this fact. In this paper, three optimized control strategies are compared in terms of efficiency and associated torque/speed characteristics. These strategies take into account numerous constraints either from the supply (with limited voltage) or from the machine (with limited current densities and maximum acceptable copper, iron and permanent magnet losses). The obtained results prove the wide potentialities of such a kind of five-phase bi-harmonic machine in terms of control under constraints. It is thus shown that the classical Maximum Torque Per Ampere (MTPA) strategy developed for the three-phase machine is clearly not satisfying on the whole range of speed because of the presence of iron losses whose values can no more be neglected at high speeds. Two other strategies have been then proposed to be able to manage the compromises, at high speeds, between the high values of torque and efficiency under the constraints of admissible total losses either in the rotor or in the stator.
7CAILLARD Pierre, GILLON Frédéric, RANDI Sid-Ali, JANIAUD Noëlle
"Mono and bi-level optimization architectures for powertrain design"
The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. 35, N°. 3, p. 847-859, 11, url,
– The purpose of this paper is to compare two design optimization architectures for the optimal design of a complex device that integrates simultaneously the sizing of system components and the control strategy for increasing the energetic performances. The considered benchmark is a battery electric passenger car.

– The optimal design of an electric vehicle powertrain is addressed within this paper, with regards to performances and range. The objectives and constraints require simulating several vehicle operating points, each of them has one degree of freedom for the electric machine control. This control is usually determined separately for each point with a sampling or an optimization loop resulting in an architecture called bi-level. In some conditions, the control variables can be transferred to the design optimization loop by suppressing the inner loop to get a mono-level formulation. The paper describes in which conditions this transformation can be done and compares the results for both architectures.

– Results show a calculation time divided by more than 30 for the mono-level architecture compared to the natural bi-level on the study case. Even with the same models and optimization algorithms, the structure of the problem should be studied to improve the results, especially if computational cost is high.

– The compared architectures bring new guidelines in the field optimal design for electric powertrains. The way to formulate a design optimization with some inner degrees of freedom can have a significant impact on computing time and on the problem understanding.
8KULKARNI Vanaitay, GIRAUD Frédéric, GIRAUD-AUDINE Christophe, AMBERG Michel, BEN MRAD Ridah
"Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module"
Journal of Intelligent Material Systems and Structures, Vol. 28, N°. 10, p. 1346-1357, 11, url,
This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 200 µW of maximum power through an optimal load resistance under 0.25 gpk acceleration excitation at its resonant frequency of 237 Hz. This harvester was then tested with two interface circuits: a standard interface diode bridge rectifier and a nonlinear synchronous electrical charge extraction circuit that were compared for their suitability in powering the sensor module. Through this, the synchronous electrical charge extraction nonlinear conditioning circuit was found to have superior performance when charging a capacitor and with DC loads at low voltages and was capable of providing a maximum power output of 37 µW under 0.25 gpk acceleration at 237 Hz. This output power was then used to successfully power a temperature sensor module consisting of a temperature sensor, a microcontroller, and a radio-frequency identification memory chip at a sensing frequency of 0.5 Hz.
9AMAMRA Sid-Ali, COLAS Frédéric, GUILLAUD Xavier, RAULT Pierre, NGUEFEU Samuel
"Laboratory Demonstration of a Multi-Terminal VSC-HVDC Power Grid"
IEEE Transactions on Power Delivery, Vol. PP, N°. 99, 11,
This paper presents the design, development, control and supervision of a hardware-based laboratory Multi- Terminal-Direct-Current (MTDC) test-bed. This work is a part of the TWENTIES (Transmission system operation with large penetration of Wind and other renewable Electricity sources in Networks by means of innovative Tools and Integrated Energy Solutions) DEMO 3 European project which aims to demonstrate the feasibility of a DC grid through experimental tests. This is a hardware-in-the-loop DC system test-bed with simulated AC systems in real time simulation; the DC cables and some converters are actual, at laboratory scale. The laboratory scale test-bed is homothetic to a full scale high voltage direct current (HVDC) system: electrical elements are the same in per unit. The test-bed is supervised by a Supervisory Control And Data Acquisition (SCADA) system based on PcVue. Primary control based droop control method to provide DC grid power balance and coordinated control methods to dispatch power as scheduled by transmission system operator (TSO) are implemented. Since primary control acts as converter level by using local measurements, a coordinated control is proposed to manage the DC grid power flow. The implemented system is innovative and achievable for real-time, real-world MTDC-HVDC grid applications.
"Variable Speed Control of a 5-Phase Permanent Magnet Synchronous Generator Including Voltage and Current Limits in Healthy and Open-Circuited Modes"
Electric Power Systems Research, Elsevier, Vol. 140, p. 507-516, ISBN DOI | 10.1016/j.epsr.2016.05.024, 11, url,
This paper proposes a novel variable speed control strategy of a particular 5-phase Permanent Magnet Synchronous Generator (PMSG) in healthy and faulty modes by taking into account the constraints on voltages and currents. These constraints are related to the converter and machine design. The considered faults are open-circuited phases (one phase, two adjacent phases and two non-adjacent phases). A variable speed control strategy is presented, including flux weakening operations. Based on analytical formulations, a numerical computation is proposed to bring out the torque-speed characteristics. This method allows the determination of the current references which ensure the functioning of a 5-phase PMSG at variable speed while keeping phase voltages and currents below their limits. Theoretical, numerical and experimental results are presented. These results are compared in order to validate the proposed approach.
11LA DELFA Patricio, HECQUET Michel, GILLON Frédéric, FAKAM Mathias
"Low space order analysis of radial pressure in SPMSM with analytical and convolution approaches"
IEEE Transactions on Magnetics, Vol. 52, N°. 11, 11,
Abstract— This paper presents an analysis of low the space order of the air-gap radial Maxwell pressures in Surface Permanent Magnet Synchronous Machines (SPMSM) with fractional slot concentrated windings. The air-gap Maxwell pressures result from the multiplication of the flux density harmonics due to magnetomotive forces and permeance linked to the magnet, the armature, and the stator slots and their interactions. One low space order is selected and different approaches are compared to determine the origin of this pressure. First, an analytical prediction tool ACHFO (Analytical Calculation of Harmonic Force Orders) is issues to calculate the space and time orders of these magnetic pressure harmonics while identifying their origin in terms of interactions between magnet, armature and teeth effects. Additionally, the analytical prediction of ACHFO is compared with the flux density convolution and finite element approaches. The main advantage of our tool is the speed of computation. Finally, an experimental Operational Deflection Shape measurement (ODS) is performed to show the deflection shape of the low space order selected.
Keywords— air-gap radial Maxwell pressures; lowest space order; analytical tool; convolution analysis; operational deflection shape.
"Vibration and acoustic noise of industrial inductors associated to converters in railway domain: design and material impacts"
The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. Issue 35, N°. 6, 11,
Acoustic comfort is an increasingly important factor at the design stage of industrial inductors associated to converters. In addition, power converters in railway domain are more and more compact and powerful. In this paper, inductors with different air-gap materials are used in order to reduce vibration and noise of inductors. Finite element calculations are performed and the detail of the origin of electromagnetic noise is studied. Electric and vibratory measurements (modal and operational analysis) are compared with the numerical calculations.
13MORIN Juliette, COLAS Frédéric, DIEULOT Jean-Yves, GRENARD Sébastien, GUILLAUD Xavier
"Embedding OLTC nonlinearities in predictive Volt Var Control for active distribution networks"
Electric Power System Research, 10
"Improved shunt damping with two negative capacitances: an efficient alternative to resonant shunt"
Journal of Intelligent Material Systems and Structures, Vol. 28, N°. 16, p. 2222-2238, 9
"Enhancing Variable Friction Tactile Display using an ultrasonic travelling wave"
IEEE Transactions on Haptics, 9, url,
In Variable Friction Tactile Displays, an ultrasonic standing wave can be used to reduce the friction coefficient between a user’s finger sliding and a vibrating surface. However, by principle, the effect is limited by a saturation due to the contact mechanics, and very low friction levels require very high vibration amplitudes. Besides, to be effective, the user’s finger has to move. We present a device which uses a travelling wave rather than a standing wave. We present a control that allows to realize such a travelling wave in a robust way, and thus can be implemented on various plane surfaces. We show experimentally that the force produced by the travelling wave has two superimposed contributions. The first one is equal to the friction reduction produced by a standing of the same vibration amplitude. The second produces a driving force in the opposite direction of the travelling wave. As a result, the modulation range of the tangential force on the finger can be extended to zero and even negative values. Moreover, the effect is dependant on the relative direction of exploration with regards to the travelling wave, which is perceivable and confirmed by a psycho-physical study.
16SAMIMI Shabab, GRUSON François, DELARUE Philippe, COLAS Frédéric, BELHAOUANE Moez, GUILLAUD Xavier
"MMC Stored Energy Participation to the DC Bus Voltage Control in an HVDC Link"
IEEE Transactions on Power Delivery, Vol. 31, N°. 4, p. 1710-1718, 8,
The modular multilevel converter (MMC) is be- coming a promising converter technology for HVDC transmission systems. Contrary to the conventional two- or three-level VSC-HVDC links, no capacitors are connected directly on the dc bus in an MMC-HVDC link. Therefore, in such an HVDC link, the dc bus voltage may be much more volatile than in a conventional VSC-HVDC link. In this paper, a connection between the dc bus voltage level and the stored energy inside the MMC is proposed in order to greatly improve the dynamic behavior in case of transients. EMT simulation results illustrate this interesting property on an HVDC link study case.
"Real-time Switches Fault Diagnosis based on Typical Operating Characteristics of Five-Phase Permanent Magnet Synchronous Machines"
IEEE Transactions on Industrial Electronics, Vol. 63, N°. 8, p. 4683-4696, ISBN DOI 10.1109/TIE.2016.2554540, 8, url,
A novel centroid-based diagnostic method of the power switches in five-leg Voltage Source Inverter (VSI) is proposed in this paper. Using a vectorial multi-machine description, a five-phase drive presenting an opened switch or an opened phase faults has typical operating characteristics in comparison to classical three-phase drives. Based on such characteristics, this work aims to provide a simple and robust diagnostic process for switches fault regardless of the shape of the back-EMFs (harmonic components) and the transient states due to the load variation. Original theoretical developments are presented. Experimental results are shown to validate the proposed strategy.
"A method coupling modified vector potential A* and homogenization formulations to model short circuits in lamination stacks"
The European Physical Journal - Applied Physics (EPJ AP), Vol. 75, N°. 3, p. 11, 8,
In this paper a method in 2-D frequency domain is presented to simulate a laminated iron core with a short-circuit between several magnetic sheets. The approach consists in coupling homogenization methods and finite element method. The defect is modeled with A* modified vector potential formulation and the rest of the structure with a homogenization method. The coupled method is applied to a lamination stack containing a short-circuit and compared to the reference, where the A* formulation is applied on the whole domain. Finally, a thermal modeling of lamination stack is presented to study the influence of an insulating defect.
"Improved resistive shunt by means of negative capacitance: new circuit, performances and multi-mode control"
Smart Materials and Structures, Vol. 25, N°. 7, p. 075033, 7,
This paper deals with vibration control by means of piezoelectric patches hunted with electrical impedances made up by a resistance and a negative capacitance. The paper analyses most of the possible layouts by which a negative capacitance can be built and shows that a common mathematical description is possible. This allows closed formulations to be found in order to
optimise the electrical network for mono- and multi-mode control. General analytical formulations are obtained to estimate the performance of the shunt in terms of vibration reduction. In particular, it is highlighted that the main effect of a negative capacitance is to artificially enhance the electromechanical coupling factor, which is the basis of performance estimation. Stability issues relating to the use of negative capacitances are especially addressed using refined models for piezoelectric patch capacitance. Furthermore, a new circuit based on a couple of negative capacitances is proposed and tested, showing a better performance than those provided by the usual layouts with a single negative capacitance. Finally, guidelines and analytical formulations to deal with the practical implementation of negative capacitance circuits are provided.
20HAMADA Souad, LOUAI Fatima Zohra, NAIT-SAID Nasreddine, BENABOU Abdelkader
"Dynamic hysteresis modeling including skin effect using diffusion equation model"
Journal of Magnetism and Magnetic Materials (JMMM), Vol. 410, p. 137-143, 7, url,
An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.
21TAN Wenhua, MARGUERON Xavier, TAYLOR Laurent, IDIR Nadir
"Leakage Inductance Analytical Calculation for Planar Components with Leakage Layers"
IEEE Transactions on Power Electronics, Vol. 31, N°. 6, p. 4462-4473, 6, url,
Planar magnetic components are promising solutions for the integration of power electronic systems. The leakage inductance of such components plays an essential role in power converters. In this paper, an analytical modeling method for leakage inductance computation is developped for planar components with plasto-ferrite leakage layers. This method is based on the solution of Poisson’s equations for magneto-static using multilayered Green’s functions. The obtained formulations are general and precise and have been validated by numerical tests. Experimental characterizations have been performed on two magnetic components: A planar LLC and planar common mode choke. The obtained results show that with the described method, the static leakage inductance of planar components can be accurately estimated.
"Torque Ripple Minimization in Non-Sinusoidal Synchronous Reluctance Motors Based on Artificial Neural Networks"
Electric Power Systems Research, Elsevier., 6,
This paper proposes a new method based on Artificial Neural Networks for reducing the torque ripple in a non-sinusoidal Synchronous Reluctance Motor. The Lagrange optimization method is used to solve the problem of calculating optimal currents in the d-q frame. A neural control scheme is then proposed as an adaptive solution to derive the optimal stator currents giving a constant electromagnetic torque and minimizing the ohmic losses.Thanks to the online learning capacity of neural networks, the optimal currents can be obtained online in real time. With this neural control, each machine’s parameters estimation errors and current controller errors can be compensated. Simulation and experimental results are presented which confirm the validity of the proposed method.
23CUELLAR Carlos, IDIR Nadir, BENABOU Abdelkader
"High Frequency Behavioral Ring Core Inductor Model"
IEEE Transactions on Power Electronics, Vol. 31, N°. 5, p. 3763 - 3772, 5,
The switching of the power semiconductors in static converters is the main source of electromagnetic interferences (EMI). To meet with Electromagnetic Compatibility (EMC) standards, it is necessary to reduce the level of the conducted emissions.
This reduction can be achieved by different techniques including the EMI filters whose design is mainly based on the use of ring core inductors. This element is a key point for designing efficient EMI filters, requiring then accurate inductor high frequency (HF) models. Therefore, the present paper deals with the development of a HF behavioral model of inductors, based on electrical equivalent circuit, for an implementation in circuit simulation software. The aim is to provide a robust and adjustable model under small-signal operating conditions for frequencies up to 100MHz. The proposed model considers the frequency dependent properties of the magnetic core material and also includes the parameterization of the electrical equivalent circuit elements with the number of winding turns and dimension of the magnetic core. Simulations results using the obtained inductor model are validated by impedance measurements with two types of magnetic materials: Ferrite and Nanocrystalline
24AKKARI Samy, DAI Jing, PETIT Marc, GUILLAUD Xavier
"Interaction between the Voltage-Droop and the Frequency-Droop Control for Multi-Terminal HVDC Systems"
IET Generation, Transmission Distribution, Vol. 10, N°. 6, p. 1345–1352, 5
25BACCHUS Alexandre, TOUNZI Abdelmounaïm, ARGAUD Jean-Philippe, BOURIQUET Bertrand, BIET Mélisande, MACAIRE Ludovic, LE MENACH Yvonnick
"Estimation of FEM Model Parameters Using Data Assimilation and Its Application to an Electrical Machine"
IEEE Transactions on Magnetics, Vol. 52, N°. 3, 5, url
26TAYLOR Laurent, HENNERON Thomas, MARGUERON Xavier, LE MENACH Yvonnick, LE MOIGNE Philippe
"Model-Order Reduction of Magneto-harmonic Problems Based on POD. Application to Planar Magnetic Components"
The European Physical Journal - Applied Physics (EPJ AP), Vol. 74, N°. 1, p. 10903, 4, url,
Predetermination of losses and inductance values in the design phase, is necessary for the development
of high-performance magnetic components for power electronics. Numerical modeling, based on
the Finite Element Method (FEM) can be used to determine the characteristics of a particular component
with a complex geometry in high frequency (HF). These models are very accurate but the computation
time required is high compared to analytical models. The Model Order Reduction (MOR) methods can
be applied to reduce the computation time while maintaining high accuracy. Nowadays, the Proper Orthogonal
Decomposition (POD) is the most popular of MOR approaches. This technique has been applied
to study problems in many elds of engineering. In this paper, the POD method is developed to solve
magneto-harmonic problems in order to study a planar magnetic inductor.
"Analysis of electromagnetically-induced vibrations of electrical machines based on spatiogram technique"
International Journal of Applied Electromagnetics and Mechanics (IJAEM), Vol. 51, N°. S1, p. S23 - S32, ISBN DOI: 10.3233/JAE-2021, 4
"Comparison of Different EMR-based Models of Traction Power Substations for Energetic Studies of Subway Lines"
IEEE Transactions on Vehicular Technology, Vol. 65, N°. 3, p. 1021-1029, 3,
Simulation is a valuable way to develop cleaner transportation systems. Nevertheless, the complexity of this kind of system conducts to complex models, especially to take into account non-linear aspects of traction power substations (TPS). This paper proposes thus different TPS models based on the Energetic Macroscopic Representation. An appropriate model is deduced from comparisons between the different models to realize energetic studies. It is finally applied to the simulation of a simple subway line, which is experimentally validated.
29PIERQUIN Antoine, HENNERON Thomas, BRISSET Stéphane, CLENET Stéphane
"Multirate coupling of controlled rectifier and non-linear finite element model based on Waveform Relaxation Method"
IEEE Transactions on Magnetics, Vol. 52, N°. 3, 3
30PIERQUIN Antoine, BRISSET Stéphane, HENNERON Thomas
"Multidisciplinary optimization formulation for the optimization of multirate systems"
IEEE Transactions on Magnetics, Vol. 52, N°. 3, 3
31CARON Guillaume, HENNERON Thomas, PIRIOU Francis, MIPO Jean-Claude
"Time periodicity condition of nonlinear magnetostatic problem coupled with electric circuit imposed by Waveform Relaxation Method"
IEEE Transactions on Magnetics, Vol. 52, N°. 3, ISBN 0018-9464, 3, url,
In numerical computation, the finite element (FE) method associated with external electric circuits is often used to evaluate electromagnetic devices with voltage sources. To study the solution of the steady state, the computation time can be prohibitive due to a large transient state compared to the time step used to discretize the time domain. In this paper, a method based on Waveform Relaxation Method is developed in order to impose the steady state of the solution in the case of a nonlinear magnetostatic problem coupled with electric circuit equations.
32LIU Sijun, MAC Duy Hung, CLENET Stéphane, COOREVITS Thierry, MIPO Jean-Claude
"Study of the Influence of the Fabrication Process Imperfections on the Performance of a Claw Pole Synchronous Machine Using a Stochastic Approach"
IEEE Transactions on Magnetics, Vol. 52, N°. 3, 3, url
33BOUGHANMI Walid, HENROTTE François, BENABOU Abdelkader, LE MENACH Yvonnick
"Finite Element Implementation and Experimental Validation of 2-D/3-D Magnetic Force Formulas"
IEEE Transactions on Magnetics, Vol. 52, N°. 2, 3, url,
A framework for the finite element implementation of the formulas of local and global electromagnetic forces is presented. The theoretical framework, based on the Lie derivative, is applicable to 2-D and 3-D problems in the presence of arbitrary materials. The numerical properties of the proposed implementation, in terms of accuracy and convergence, are analyzed. An experimental setup is also presented for which accurate measurements have been carried out, and that can serve as a benchmark for the implementation.
34SCUILLER Franck, ZAHR Hussein, SEMAIL Eric
"Maximum reachable torque, power and speed for five-phase SPM machine with low armature reaction"
IEEE Transactions on Energy Conversion, Vol. 31, N°. 3, p. 959 - 969, ISBN doi: 10.1109/TEC.2016.2542581, 3, url,
In this paper, the study of the torque and power versus speed characteristics for a family of five-phase Surfacemounted
Permanent Magnet (SPM) machine is carried out. With considering hypotheses (linear magnetic modeling, only first and third harmonic terms in the back-emf and current spectrums), an optimization problem that aims to maximize the torque for given maximum peak voltage and RMS current is formulated: the optimal torque sharing among the two virtual machines (the two dq-axis subspaces) that represent the real five-phase machine is thus calculated for any mechanical speed. For an inverter and a DC voltage sized with only considering the first harmonic of backemf and current, the problem is solved with changing the virtual machine back-emfs and inductances ratios. With the introduction of the maximum torque/speed point, maximum power/speed point and maximum reachable speed, it can be shown that, if the inductance ratio is large enough, for given Volt-Ampere rating, the machine can produce higher torque without reducing its speed range thus meaning that the capability of the inverter to work is improved with the use of the third harmonic. This property is all the truer as the base armature reaction is large. A particular five-phase machine is sized and numerically analyzed to check this property.
35MONTIER Laurent, HENNERON Thomas, CLENET Stéphane, GOURSAUD Benjamin
"Transient simulation of an electrical rotating machine achieved through model order reduction"
Advanced Modeling and Simulation in Engineering Sciences, Vol. 3, N°. 10, 3, url,
Model order reduction (MOR) methods are more and more applied on many different fields of physics in order to reduce the number of unknowns and thus the computational time of large-scale systems. However, their application is quite recent in the field of computational electromagnetics. In the case of electrical machine, the numerical model has to take into account the nonlinear behaviour of ferromagnetic materials, motion of the rotor, circuit equations and mechanical coupling. In this context, we propose to apply the proper orthogonal decomposition combined with the (Discrete) empirical interpolation method in order to reduce the computation time required to study the start-up of an electrical machine until it reaches the steady state. An empirical offline/online approach based on electrical engineering is proposed in order to build an efficient reduced model accurate on the whole operating range. Finally, a 2D example of a synchronous machine is studied with a reduced model deduced from the proposed approach.
"Potential of Vehicle-to-Grid Ancillary Services Considering the Uncertainties in Plug-in Electric Vehicle Availability and Service/Localization Limitations in Distribution Grids"
Applied Energy, Vol. 171, p. 523-540, ISBN 0306-2619, 3, url,
he aim of the paper is to propose an approach for statistical assessment of the potential of plug-in
electric vehicles (PEV) for vehicle-to-grid (V2G) ancillary services, where it focuses on PEVs doing daily
home-work commuting. In this approach, the possible ancillary services (A/S) for each PEV fleet in terms
of its available V2G power (AVP) and flexible intervals are identified. The flexible interval is calculated
using a powerful stochastic global optimization technique so-called ‘‘Free Pattern Search” (FPS). A probabilistic
method is also proposed to quantify the impacts of PEV’s availability uncertainty using the
Gaussian mixture model (GMM), and interdependency of stochastic variables on AVP of each fleet thanks
to a multivariate modeling with Copula function. Each fleet is analyzed based on its aggregated PEV numbers
at different level of distribution grid, in order to satisfy the ancillary services localization limitation.
A case study using the proposed approach evaluates the real potential in Niort, a city in west of France. In
fact, by using the proposed approach an aggregator can analyze the V2G potential of PEVs under its
"Space-Time Field Projection: Finite-Element Analysis Coupled Between Different Meshes and Different Time-Step Settings"
IEEE Transactions on Magnetics, Vol. 52, N°. 3, 3
38HENNERON Thomas, CLENET Stéphane
"Application of the PGD and DEIM to Solve a 3-D Non-Linear Magnetostatic Problem Coupled With the Circuit Equations"
IEEE Transactions on Magnetics, Vol. 52, N°. 3, 3
39NGUYEN Thu-Trang, MAC Duy Hung, CLENET Stéphane
"Uncertainty Quantification Using Sparse Approximation for Models With a High Number of Parameters: Application to a Magnetoelectric Sensor"
IEEE Transactions on Magnetics, Vol. 52, N°. 3, ISBN 0018-9464, 3
40CLENET Stéphane, HENNERON Thomas, IDA Nathan
"Reduction of a Finite-Element Parametric Model Using Adaptive POD Methods—Application to Uncertainty Quantification"
IEEE Transactions on Magnetics, Vol. 52, N°. 3, 3
41CLENET Stéphane, HENNERON Thomas
"Error Estimation for Model Order Reduction of Finite Element Parametric Problems"
IEEE Transactions on Magnetics, Vol. 52, N°. 8, p. 1-10, 3, url
"Comparison of energy management strategies of a battery/supercapacitors system for Electric Vehicle under real-time constraints"
Applied Energy, Vol. 163, p. 190-200, 2
"Dynamical Modeling of Li-ion Batteries for Electric Vehicle Applications Based on Hybrid Particle Swarm-Nelder-Mead (PSO-NM) Optimization Algorithm"
Electric Power Systems Research Journal, Elsevier, Vol. 131, N°. C, p. 195-204, 2, url,
In recent years, Li-ion batteries are widely used in various applications, such as electric and hybrid vehicles application. Their higher specific power and energy density, high cycle lifetime and decreasing costs have made them an attractive and alternative energy storage technology to lead-acid or nickel- metal hydride batteries in embedded power supplies. In the present work, the electric modeling of a Li-ion battery cell in real operating conditions imposed by an electric vehicle application is carried out. A dynamic equivalent circuit model has been used to simulate several electrochemical processes occurring in a commercially available 40 Ah Li-ion battery cell with NMC cathode material and graphitic anode. The model is parameterized with measurement data in time-domain using a hybrid Particle Swarm–Nelder–Mead (PSO–NM) optimization algorithm. This last one is used to solve the parameters identification problem of Li-ion battery model. The developed model of Li-ion battery cell has been validated on real driving cycle provided by an urban electric vehicle. Obtained results show that there is a good match between experiment and simulation results with a maximum modeling error less than 0.5%, which proves the well performance of our model and confirm the interest of a hybrid (PSO–NM) optimization algorithm for battery identification parameters.
"Amplitude control of an ultrasonic vibration for a tactile stimulator"
IEEE/ASME Transactions on Mechatronics, Vol. 21, N°. 3, ISBN DOI: 10.1109/TMECH.2016.2535300, 2, url,
This paper describes the control in a (d-q) frame of the vibration amplitude of a tactile stimulator based on ultrasonic vibrations. The goal is to fulfil simultaneously two objectives: maintain a constant level of vibration amplitude and excite the system at the resonance frequency. A new modelling approach is presented in order to facilitate the control and to fulfil the two objectives simultaneously. Then, thanks to an experimental setup, the validation of the new model is performed. Finally, the result of the closed loop control over a wide range of disturbing factors is presented.
"Relation between human perceived friction and finger friction characteristics"
ELSEVIER Tribology International, Vol. 98, p. 261–269, ISBN doi:10.1016/j.triboint.2016.02.031, 2, url,
The topic of this paper concerns the relation between friction perception and finger friction behaviour. Two experiments were processed for some 20 individuals. The aim of the first experiment was to determine the distribution function of the perceived friction variation detected by the individuals, relating to the friction variation of the touched surface generated with a tactile stimulator. The second experiment was to determine the finger friction criterion correlated with the perceived friction variation analysed from psychophysical techniques. This criterion, called the friction contrast, depends on the individual finger and is influenced by the sliding velocity.
46LI Ke, VIDET Arnaud, IDIR Nadir
"Characterization Method of SiC-JFET Interelectrode Capacitances in Linear Region"
IEEE Transactions on Power Electronics, Vol. 31, N°. 2, p. 1528-1540, 2, url,
In order to study switching waveforms of a SiCJFET, its inter-electrode capacitances evolution is necessary when the power device is in linear region. In this paper, the reverse transfer capacitance Cgd is at first characterized by the multiplecurrent- probe method and afterwards validated by the measurement with an impedance analyzer. The output capacitance Coss is measured by the same method and compared with the single-pulse characterization, which shows a huge increase of the apparent capacitance values in linear region. The influence of the power transistor internal gate resistor is thus studied, revealing the inter-electrode capacitances measurement difficulties when the power device is in linear region. The characterization results are allowed to finely model the power transistor of which the switching behaviors are validated with the measurement in a buck converter.
47DO Minh Thang, SOUBDHAN Ted, ROBYNS Benoît
"A study on the minimum duration of training data to provide a high accuracy forecast for PV generation between two different climatic zones"
Renewable Energy, Elsevier, Vol. 85, p. 959–964, 1,
This study focus on the minimum duration of training data required for PV generation forecast. In order to investigate this issue, the study is implemented on 2 PV installations: the first one in Guadeloupe represented for tropical climate, the second in Lille represented for temperate climate; using 3 different forecast models: the Scaled Persistence Model, the Artificial Neural Network and the Multivariate Polynomial Model. The usual statistical forecasting error indicators: NMBE, NMAE and NRMSE are computed in order to compare the accuracy of forecasts.

The results show that with the temperate climate such as Lille, a longer training duration is needed. However, once the model is trained, the performance is better.
"Fault-Tolerant Operation of an Open-End Winding Five-Phase PMSM Drive with Short-Circuit Inverter Fault"
IEEE Transactions on Industrial Electronics, Vol. 63, N°. 1, p. 595-605, ISBN doi: 10.1109/TIE.2014.2386299, 1, url,
Multi-phase machines are well-known for their fault tolerant capability. Star-connected multiphase machines have fault tolerance in open-circuit. For inverter switch short-circuit fault, it is possible to keep a smooth torque of Permanent Magnet Synchronous Machine (PMSM) if the currents of faulty phases are determined and their values are acceptable. This paper investigates fault-tolerant operations of an open-end five-phase drive, i.e. a multi-phase machine fed with a dual-inverter supply. Inverter switch short-circuit fault is considered and handled with a simple solution. Original theoretical developments are presented. Simulation and experimental results validate the proposed strategy.
1LI Ke, VIDET Arnaud, IDIR Nadir
"Fast Power Semiconductors Switching Current Measurement by Current Surface Probe"
EPE Journal, Vol. 25, N°. 4, p. 10, 12,
With the advantage of high bandwidth and small insertion impedance, a current surface probe (CSP) used to measure switching current waveforms is presented in this paper. Its transfer impedance is characterized and validated by measuring an IGBT switching current that is compared with those obtained with a current probe (CP), a current shunt (CS) and a Hall effect current probe (HECP). Furthermore, by comparing with a CS to measure a GaN-HEMT switching current, it is shown that CSP is able to measure a switching current of a few nanoseconds, while it brings no influence on transistor voltage waveform measurement. The obtained results show that, the use of CSP brings little parasitic inductances in the measurement circuit and it does not bring the connection of the ground to the power converter, which is the case for the CS.
2KOTNY Jean-Luc, DUQUESNE Thierry, IDIR Nadir
"Influence of the common mode impedance paths on the design of the EMI filters used with SiC-buck converter"
ADVANCED ELECTROMAGNETICS (AEM), Vol. 4, N°. 2, p. 44-53, ISBN 2119-0275, 12, url,
This paper deals the design method of EMI filter associated with buck converter using silicon carbide (SiC) power semi-conductors. It's well known that to comply with EMC standards, EMI filters are necessary. The aim is to propose a design method based on an equivalent electrical circuit. Thus, the first step is the identification of the different elements of the proposed model but also the limits values of the parasitic elements of the passive components which play a major influence on the efficiency of the filters. The main objective is to study the influence of the common mode paths on the design of the filter before and after its installation. A filtering solution is proposed to reduce the high frequency disturbances caused by the fast SiC components. The simulation results obtained with the proposed model are compared with the measurements show
the effectiveness of the proposed EMI filter design method.
3MAC Duy Hung, TANG Zuqi, CLENET Stéphane, CREUSE Emmanuel
"Residual a posteriori error estimation for a stochastic magnetostatic problem"
Journal of Computational and Applied Mathematics, Vol. 289, p. 51--67, 12, url,
In this paper, we propose an a posteriori error estimator for the numerical approximation of a stochastic magnetostatic problem, whose solution depends on the spatial variable but also on a stochastic one. The spatial discretization is performed with finite elements and the stochastic one with a polynomial chaos expansion. As a consequence, the numerical error results from these two levels of discretization. In this paper, we propose an error estimator that takes into account these two sources of error, and which is evaluated from the residuals.
4CHEN Chao, CREUSE Emmanuel, NICAISE Serge, TANG Zuqi
"Residual-based a posteriori estimators for the potential formulations of electrostatic and time-harmonic eddy current problems with voltage or current excitation"
International Journal for Numerical Methods in Engineering, Vol. 107, N°. 5, p. 377--394, 12, url,
In this paper, we consider some potential formulations of electrostatic as well as time-harmonic eddy current problems with voltage or current excitation sources. The well-posedness of each formulation is first established. Then, the reliability of the corresponding residual-based a posteriori estimators is derived in the context of the finite element method approximation. Finally, the implementation in an industrial code is performed, and the obtained theoretical results are illustrated on an academic and on an industrial benchmark.
"Advanced Control System of DFIG Based Wind Generators for Reactive Power Production and Integration in a Wind Farm Dispatching"
Energy Conversion and Management, Vol. 105, p. 240 - 250, 11
"Practical control schemes of a battery/supercapacitor system for electric vehicle"
IET Electrical Systems in Transportation, Vol. 6, N°. 1, p. 20-26, 11
"Coupling of ultrasonic vibration and electrovibration for tactile stimulation"
European Journal of Electrical Engineering, Vol. 17, N°. 5-6, p. 377-395, ISBN doi:10.3166/ejee.17.377-395, 11, url,
L’électrovibration et l’effet squeeze film produit par vibration ultrasonique sont deux principes de stimulation tactile permettant de modifier la sensation de toucher d’un utilisateur explorant une surface plane. Le présent article s’attache à démontrer leur compatibilité sur un même stimulateur tactile lors d’une utilisation concomitante. Une description du principe physique et des spécificités de chacun des phénomènes sera entreprise et les résultats expérimentaux obtenus lors de leur association seront par ailleurs présentés.
Electrovibration and squeeze film effect are two different principles, which modify the user’s perception of a surface. The first one is generated by the polarization of a finger approaching a high voltage supplied plate, and the latter by the ultrasonic vibration of a plate. Their compatibility on the same stimulator will be presented in this paper and their concomitant use will be proven. A parametric study on electrovibration in function of the material choice and a first experimental investigation of the validity of the squeeze film effect hypothesis are performed. A description of the physical principle and the characteristics of each effect will be proposed and force measurements of their coupling will be presented.
8DIBANGOYE Jilles, DONIEC Arnaud, FAKHAM Hicham, COLAS Frédéric, GUILLAUD Xavier
"Distributed Economic Dispatch of Embedded Generation in Smart Grids"
Engineering Applications of Artificial Intelligence, Vol. 44, p. 64-78, 10
9DIEULOT Jean-Yves, COLAS Frédéric, CHALAL Lamine, DAUPHIN-TANGUY Geneviève
"Economic supervisory predictive control of a hybrid power generation plant"
Electric Power Systems Research, Vol. 127, p. 221-229, 10, url,
This work deals with the development of an economic supervisory predictive control method for the management of a hybrid renewable energy system. The hybrid cell integrates solar panels, a gas microturbine and a storage unit. Tuning the predictive controller is easy: the optimal criterion encompasses the environmental, fuel, energy delivery and storage costs. Short time predictions of the solar power are embedded in the supervisor which yields smoother battery control and better power management. Real-time experiments are driven in a Hardware-in-the-Loop framework illustrating the relevance of the proposed supervisory predictive control design.
10GUILLAUD Xavier, FARUQUE Omar, TENINGE Alexandre, PAOLONE Mario, LAUSS Georg, DUFOUR Christian
"Applications of Real-Time Simulation Technologies in Power and Energy Systems"
IEEE on Power and Energy Technology Systems Journal,, Vol. 2, N°. 3, p. 103 - 105, 9
"Power analysis for the design of a large area ultrasonic tactile touch panel"
The European Physical Journal - Applied Physics (EPJ AP), Vol. 72, p. 1-11, 9, url,
Tactile interfaces are intuitive but lack of haptic feedback. One method to provide tactile feed-
back is to change the friction coefficient of the touch surface. Several small-size tactile devices have been
developed to provide programmable friction coefficient based on the squeeze air film effect. This effect is
produced by ultrasonic vibration of the tactile plate thanks to piezoceramics. In order to design larger
embedded tactile feedback areas, a key issue is the power consumption. In this paper, we present the
power analysis of a tactile device which is based on the squeeze film effect. We first investigate the source
of power consumption by a series of measurements. Then, an analytical model is developed to estimate the
power, which gives the conclusion that, when the vibration amplitude is constant, the power consumption
is not related to the number of piezoelectric actuators. According to this result, we design a large area
(198 mm × 138 mm) tactile plate with only eight piezoelectric actuators. Experimental results show that
the power consumption of the large tactile plate is less than 2 W. Moreover, we also find that the power
consumption of the large tactile plate was predictable with the measurement results from small plates with
an average error of less than 10%.
"Generalized modal analysis for closed-loop piezoelectric devices"
Smart Materials and Structures, Vol. 24, N°. 8, p. 085028, ISBN 0964-1726, 1361-665X, 8, url
"Open-circuit fault detection and diagnosis in pulse-width modulation voltage source inverters based on novel pole voltage approach"
Transactions of the Institute of Measurement and Control, Vol. 38, N°. 7, 8
14TANG Zuqi, LE MENACH Yvonnick, CREUSE Emmanuel, NICAISE Serge, PIRIOU Francis, NEMITZ Nicolas
"A posteriori residual error estimators with mixed boundary conditions for quasi-static electromagnetic problem"
The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. 34, N°. 3, p. 724-739, 7, url
15BUENO Marie-Ange, LEMAIRE-SEMAIL Betty, AMBERG Michel, GIRAUD Frédéric
"Pile Surface Tactile Simulation: Role of the Slider Shape, Texture Close to Fingerprints, and the Joint Stiffness"
Tribology Letters (Springer), Vol. 59, N°. 25, p. 2-12, 7, url,
Stimulating the human hand with a tactile
device in order to simulate pile fabric touch is a challenge.
The stimulation has to be designed from the friction
characteristics of the investigated pile surfaces, i.e. velvet
fabrics. The tactile illusion of pile is given when touching
the smooth plate of the tactile stimulator STIMTAC by
modulating the coefficient of friction between the plate and
the finger during an active movement. In a preliminary
study, five tribological features as velvet fabric character-
istics were identified, used for the design of the stimulator’s
control signal, and validated via psychophysical studies
where real and simulated fabrics were compared. But a
specific tribological feature described and expected by
individuals was missing. Then, a tribological investigation
has been done in order to obtain this tribological feature,
with the five previous ones, by changing experimental
conditions: slider shape, texture, and joint stiffness. The
obtained results show that a rounded shape of the slider has
an influence only on the friction force level, but a texture of
the slider close to fingerprints and a joint stiffness is crucial
to obtain the missing characteristic and therefore for the
pile surface tribological characterization. The role of the
fingerprints in touching grooved surfaces has been pub-
lished before but not for pile surfaces.
16LALOUNI S., REKIOUA Djamila, IDJDARENE Kassa, TOUNZI Abdelmounaïm
"Maximum Power Point Tracking Based Hybrid Hill Climb Search Method Applied to Wind Energy Conversion System"
Electric Power Components and Systems, Vol. 43, N°. 8-10, p. 1028-1038, 6, url
17ARBENZ Laure, BENABOU Abdelkader, CLENET Stéphane, MIPO Jean-Claude, FAVEROLLE Pierre
"Characterization of the local electrical properties of electrical machine parts with non-trivial geometry"
International Journal of Applied Electromagnetics and Mechanics (IJAEM), Vol. 48, N°. 2-3, p. 201-206, 6
18TANG Zuqi, LE MENACH Yvonnick, CREUSE Emmanuel, NICAISE Serge, PIRIOU Francis
"Residual a posteriori estimator for magnetoharmonic potential formulations with global quantities for the source terms"
IEEE Transactions on Magnetics, Vol. 51, N°. 3, 6,
In the modeling of eddy current problems, potential formulations are widely used in recent days. In this paper, the results of residual-based a posteriori error estimators, which evaluate the discretization error in the finite-element computation, are extended to the case of several kinds of source terms for both A/φ and T/Ω harmonic formulations. The definitions of the estimators are given and some numerical examples are provided to show the behavior of the estimators.
19LI Ke, VIDET Arnaud, IDIR Nadir
"Using Current Surface Probe to Measure the Current of the Fast Power Semiconductors"
IEEE Transactions on Power electronics, Vol. 30, 6, url,
With the advantage of high bandwidth and small insertion impedance, a current surface probe (CSP) used to measure switching current waveforms is presented in this letter. Its transfer impedance is characterized and validated by measuring an IGBT switching current that is compared with those obtained with a current probe (CP) and a Hall effect current probe (HECP). Furthermore, by comparing with a current shunt (CS) to measure a GaN-HEMT switching current, it is shown that CSP is able to measure a switching current of a few nanoseconds, while it brings no influence on transistor voltage waveform measurement. The obtained results show that, the use of CSP brings little parasitic inductances in the measurement circuit and it does not bring the connection of the ground to the power converter.
20PIERQUIN Antoine, BRISSET Stéphane, HENNERON Thomas, CLENET Stéphane
"Optimisation process to solve multirate system"
Przeglad Elektrotechniczny, Vol. 2015, N°. 6, p. 54-57, 6, url
21HENNERON Thomas, CLENET Stéphane
"Proper Generalized Decomposition Method Applied to Solve 3-D Magnetoquasi-Static Field Problems Coupling With External Electric Circuits"
IEEE Transactions on Magnetics, Vol. 51, N°. 6, 6
22BELAHCEN Anouar, RASILO Paavo, NGUYEN Thu-Trang, CLENET Stéphane
"Uncertainty Propagation of Iron Loss from Characterization Measurements to Computation of Electrical Machines"
The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. 34, N°. 3, p. 624-636, 5
"Lifetime estimation tool of lead–acid batteries for hybrid power sources design"
Simulation Modelling Practice and Theory, Vol. 54, p. 36–48, ISBN 10.1016/j.simpat.2015.03.001, 5, url,
Generally, battery lifespan depends on the number of cycles and depth of discharge (DOD). Nevertheless, in a renewable hybrid power system, charge and discharge cycles are random and not regular. Therefore, it is important to develop an aging model suitable to this case. Thus, in this paper, a pertinent way for aging lead–acid batteries connected to a stand-alone multi-source renewable system has been developed. It is based on the Rain Flow method for counting cycles and considers instantaneous DOD and average temperature. In fact, for each functioning year, a classification of the number of cycles according to the DOD is done. Then, based on these data, the battery degradation rate is estimated so that it is possible to draw conclusions about battery lifespan.

The method has been successfully applied to a multi-source power system simulated dynamically under Matlab/Simulink. This last takes into account with good accuracy several inputs and elements such as sun irradiation, wind speed, load profile, photovoltaic generator, wind turbine, and diesel generator. Results show the influence of the DOD and the batteries nominal capacity on their lifespan. A mean of eight years’ life is detected. Finally, a reasonable over-sizing may favor battery longevity.
24CHEAYTANI Jalal, BENABOU Abdelkader, TOUNZI Abdelmounaïm, DESSOUDE Maxime, CHEVALLIER Loïc, HENNERON Thomas
"End-Region Leakage Fluxes and Losses Analysis of Cage Induction Motors Using 3-D Finite-Element Method"
IEEE Transactions on Magnetics, Vol. 51, N°. 3, 4, url,
The stray load losses (SLLs) in electrical machines represent a non-negligible contribution of the total losses and a key point for an accurate evaluation of the energy efficiency of considered device. In this paper, one aspect of these SLLs, the end-region leakage fluxes and losses, is investigated and considered for the case of a high-power cage induction motor. The study is performed at locked rotor, no-load, and rated load conditions using a 3-D finite-element modeling approach. The influence of the leakage flux on the end-region conductive parts of the motor is analyzed together with the eddy current loss calculation. Finally, the SLLs are calculated and compared with the experimental measurements based on the IEEE standard 112-method B test.
25FAKAM Mathias, HECQUET Michel, LANFRANCHI Vincent, RANDRIA Andry
"Design and magnetic noise reduction of the Surface permanent Magnet Synchronous Machine using complex airgap permeance."
IEEE Transactions on Magnetics, Vol. 51, N°. 4, 4,
Nowadays, developing electric motorization for land vehicles is essential due to the crucial need to save energy. This paper presents the development of a tool used for optimal acoustic and electromechanical modeling whose highly accurate calculations and speed of resolution make it stand out from standard analytical and Finite Element models. By coupling an analytical model with static FE simulations, our ’hybrid’ model calculates a complex global air-gap permeance per area unit, to take into account magnetic
wedge permeability, pre-slot height, and rotor shape. An unparalleled level of precision and speed of resolution is obtained for the computation of air-gap magnetic pressures. Several results of comparisons between acoustic measurements and simulations on a
concentrated winding motor for different speeds are presented.
26DULAR Patrick, LE MENACH Yvonnick, TANG Zuqi, CREUSE Emmanuel, PIRIOU Francis
"Finite element mesh adaptation strategies from residual and hierarchical error estimators in eddy current problems"
IEEE Transactions on Magnetics, Vol. 51, N°. 3, 4, url,
A strategy of mesh adaptation in eddy current finite element modeling is developed from both residual and hierarchical error estimators. Wished distributions of element sizes of adapted meshes are determined from the element-wise local contributions to the estimators and define constraints for the mesh generator. Uniform distributions of the local error are searched.
27HENNERON Thomas, CLENET Stéphane
"Model-Order Reduction of Multiple-Input Non-Linear Systems Based on POD and DEI Methods "
IEEE Transactions on Magnetics, Vol. 51, N°. 3, 4
28WANG Zifu, HENNERON Thomas, PIRIOU Francis, MIPO Jean-Claude
"Energetic Mesh-to-Mesh Projection of Magnetic Fields With Respect to Nonlinear B-H Curves"
IEEE Transactions on Magnetics, Vol. 51, N°. 3, 4
"Physical and perceptual independence of ultrasonic vibration and electrovibration for friction modulation"
IEEE - Transaction on Haptics, Vol. 8, N°. 2, p. 235 - 239, ISBN 10.1109/TOH.2015.2430353, 4, url,
Two different principles are available to modulate the user perceived roughness of a surface: electrovibration and ultrasonic vibration of a plate. The former enhances the perceived friction coefficient and the latter reduces it. This paper will highlight the independence of the two effects on the physical and perceptual point of view to confirm the increased range of sensation and stimulation that can be supplied by the two coupled techniques to the users. Firstly, a tribometric analysis of the induced lateral force on the finger by the two coupled effects will be presented, then a study on the dynamic of the two effects will be reported. In the end, a psychophysical experiment on the perception of the two coupled techniques will be shown.
30HENNERON Thomas, CLENET Stéphane
"Error estimation of a proper orthogonal decomposition reduced model of a permanent magnet synchronous machine"
IET Science, Measurement & Technology, 3
"Grid-Connected Photovoltaic Generation Plant as Alternative Energy Sources"
IEEE Industrial Electronics Magazine, Vol. 9, p. 18 - 32, 3
32TITTARELLI Roberta, LE MENACH Yvonnick, CREUSE Emmanuel, NICAISE Serge, PIRIOU Francis, MOREAU Olivier, BOITEAU Olivier
"Space-time residual-based a posteriori estimator for the Α-φ formulation in eddy current problems."
Magnetics, IEEE Transactions, Vol. 51, N°. 3, 3,
In this work, an a posteriori residual error estimator is presented for the 3D eddy current problem modeled by the space-time A-phi potential formulation. It is solved by the finite element method in space and the backward Euler scheme in time. Once the reliability as well as the efficiency of the estimator are established, two numerical tests are proposed: an analytical one in order to validate the theoretical results and a physical one in order to illustrate the performance for a real eddy current problem.
33OFFERMANN Peter, MAC Duy Hung, NGUYEN Thu-Trang, CLENET Stéphane, DE GERSEM Herbert, HAMEYER Kay
"Uncertainty Quantification and Sensitivity Analysis in Electrical Machines With Stochastically Varying Machine Parameters"
IEEE Transactions on Magnetics, Vol. 51, N°. 3, 3
34ARNOUX Pierre-Hadrien, CAILLARD Pierre, GILLON Frédéric
"Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning"
IEEE Transactions on Magnetics, Vol. 51, N°. 3, 3, url
35PIERQUIN Antoine, HENNERON Thomas, CLENET Stéphane, BRISSET Stéphane
"Model Order Reduction of Magnetoquasistatic Problems Based on POD and Arnoldi-based Krylov Methods "
IEEE Transactions on Magnetics , Vol. 51, N°. 3, 3
36MARLIER Clément, VIDET Arnaud, IDIR Nadir
"NIF-Based Frequency-Domain Modeling Method of Three-Wire Shielded Energy Cables for EMC Simulation"
IEEE Transactions on Electromagnetic Compatibility, Vol. 57, N°. 1, 2, url,
This paper focuses on the modeling method of energy cables used in power conversion systems, in the aim of EMC simulation and overvoltage analysis. Based on the node-to-node functions method, A simple frequency-domain model with a reduced number of equivalent impedances is considered and applied to three-wire shielded cables, along with a fast identification method based on a cascaded-cell model. Even though the model eventually includes nonphysical virtual impedances, simulation in frequency domain provides accurate results when compared to equivalent experimental measurements, for various cable lengths and in short simulation times. Time-domain waveforms are then extracted from frequency-domain simulation and confirm the effectiveness of the proposed method in a wide frequency range up to 50 MHz. Finally, a good match has been found between experimental and simulation results of voltage overshoots on a buck power converter system.
"Dynamical and quasi-static multi-physical models of a diesel internal combustion engine using Energetic Macroscopic Representation"
Energy Conversion and Management (Elsevier), Vol. 91, p. 280 - 291, 2,
In the simulation of new vehicles, the Internal Combustion Engine (ICE) is generally modeled by a static map. This model yields the mechanical power and the fuel consumption. But some studies require the heat energy from the ICE to be considered (i.e. waste heat recovery, thermal regulation of the cabin). A dynamical multi-physical model of a diesel engine is developed to consider its heat energy. This model is organized using Energetic Macroscopic Representation (EMR) in order to be interconnected to other various models of vehicle subsystems. An experimental validation is provided. Moreover a multi-physical quasi-static model is also derived. According to different modeling aims, a comparison of the dynamical and the quasi-static model is discussed in the case of the simulation of a thermal vehicle. These multi-physical models with different simulation time consumption provide good basis for studying the effects of the thermal energy on the vehicle behaviors, including the possibilities of waste heat recovery.
"Methods for Assessing Available Wind Primary Power Reserve"
IEEE Transactions On Sustainable Energy, Vol. 6, p. 272 - 280, 1
39DIEULOT Jean-Yves, COLAS Frédéric, CHALAL Lamine, DAUPHIN-TANGUY Geneviève
"Event-triggered variable horizon Supervisory Predictive control of hybrid power plants"
Control Engineering Practice, Vol. 34, p. 61-67, 1, url,
The supervision of a hybrid power plant, including solar panels, a gas microturbine and a storage unit operating under varying solar power profiles is considered. The Economic Supervisory Predictive controller assigns the power references to the controlled subsystems of the hybrid cell using a financial criterion. A prediction of the renewable sources power is embedded into the supervisor. Results deteriorate when the solar power is unsteady, owing to the inaccuracy of the predictions for a long-range horizon of 10 s. The receding horizon is switched between an upper and a lower value according to the amplitude of the solar power trend. Theoretical results show the relevance of horizon switching, according to a tradeoff between performance and prediction accuracy. Experimental results, obtained in a Hardware In the Loop (HIL) framework, show the relevance of the variable horizon approach. Power amplifiers allow us to simulate virtual components, such as a gas microturbine, and to blend their powers with that of real devices (storage unit, real solar panels). In this case, fuel savings, reaching 15%, obtained under unsteady operating conditions lead to a better overall performance of the hybrid cell. The overall savings obtained in the experiments amount to 12%.
"Methods for Assessing Available Wind Primary Power Reserve "
IEEE Transaction on Sustainable Energy, Vol. 6, N°. 1, p. 272 - 280, 1,
To ensure power system security with very high wind generation (WG) penetration, the participation of wind generators in primary frequency control is essential. Previous studies have shown the technical capability of wind turbines to participate in primary frequency regulation at a wind farm level. In order to analyze, the contribution of wind power to primary frequency regulation at system level one needs to quantify the amount of primary reserve from conventional sources that can be displaced. This amount of reserve depends on the aggregated variability of WG during each reserve provision time-interval. This paper presents a statistical approach to assess the impact of intrahour wind power variability on the volume of primary reserve that can be provided from WG. Furthermore, the effectiveness of different reserve allocation strategies is compared. The proposed approach is applied to a case study based on real-wind data measurements from the French island of Guadeloupe. Results show that for a small isolated system neglecting WG intrahourly variability leads to an overestimation of its contribution to primary reserve.
1SAMARKANOV Dmitry, GILLON Frédéric, BROCHET Pascal, LALOY Daniel
"Bi-objective optimization of induction machine using interval-based interactive algorithms"
COMPEL, Vol. 33, N°. 3, p. 729 - 744 ,, 12, url,
– Discrete highly constrained optimization of induction machine taking into consideration two objective functions: efficiency and total costs of production. The paper aims to discuss these issues.

– Interactive and semi-interactive interval-based optimization methods were used. Two concepts of multi-objective discrete optimization were proposed.

– Proposed methodology and algorithms allow decision maker (DM) participate in the process of optimal design and therefore decrease the total time of optimization process. The search procedure is straightforward and it does not require special skills of DM. Presented methods were successfully versified for the problem of optimal design with discrete variables.

Research limitations/implications
– Three interval algorithms suitable for inverse problems are researched and verified. It generally can be used for multi-objective problems. The dominance principles for interval boxes are showed in the paper. Proposed algorithms are based on the idea of hybridization of exact and evolutionary methods.

Practical implications
– Proposed approaches were successfully implemented within computer-aided application which is used by manufacturer of high power induction machine.

– The concept of pareto-domination using the interval boxes can be treated as original. The paper researched several elimination rules and discusses the difference between different approaches.
2LALOUNI S., REKIOUA Djamila, IDJDARENE Kassa, TOUNZI Abdelmounaïm
"An improved MPPT algorithm for wind energy conversion system’"
J. Electrical Systems, Vol. 10, N°. 4, p. 484-494, 12
3CUELLAR Carlos, IDIR Nadir, BENABOU Abdelkader, MARGUERON Xavier
"High frequency current probes for common-mode impedance measurements of power converters under operating conditions"
EPE Journal, Vol. 24, N°. 4, p. 48-55, 12, url,
Two current probes are designed with the appropriate magnetic material in order to make impedance measurements in High Frequency (HF) using the Current Injection Method (CIM). These probes are then used to measure the common-mode impedance of power converters in real-operating conditions. The characterization of this impedance is required for a correct EMI filter design. In this paper, a simple formulation of the probe transfer impedance, based on S-parameters, is proposed. These probes allow improving the accuracy of impedance measurements in a wide frequency range, up to 100 MHz. The measured impedances of the power converter are then applied in the design of the common mode EMI filter under real operation conditions. The obtained insertion losses of the filter are finally compared with those measured under 50Ω-50Ω
4KANCHEV Hristiyan, COLAS Frédéric, LAZAROV Vladimir, FRANCOIS Bruno
"Emission Reduction and Economical Optimization of an Microgrid Operation Including Dispatched PV-Based Active Generators"
IEEE Transactions On Sustainable Energy, Vol. 5, N°. 4, p. 1755 - 1796, 10
"Coupling Bond Graph and Energetic Macroscopic Representation for Electric Vehicle Simulation"
Mechatronics Elsevier, Vol. 24, N°. 7, p. 906-913, 10, url,
This paper deals with the analysis and simulation of an electric vehicle, coupling functional and structural
approaches in the same simulation environment. The Bond Graph model, the structural approach, is first
deduced from the physical system, which in turn produces a direct correspondence between the system
and its model. The control structure is then easily deduced from the Energetic Macroscopic Representa-
tion, the functional approach, of the vehicle using a systematic procedure. Simulation results are provided
in order to analyze the performance of the closed-loop system
6SANDULESCU Alexandru-Paul, MEINGUET Fabien, KESTELYN Xavier, SEMAIL Eric, BRUYERE Antoine
"Control Strategies for Open-End Winding Drives Operating in the Flux-Weakening Region"
IEEE Transactions on Power Electronics, Vol. 29, N°. 9, p. 13, 9, url,
This paper presents and compares control strategies for three-phase open-end winding drives operating in the flux-weakening region. A six-leg inverter with a single dc-link is associated with the machine in order to use a single energy source. With this topology, the zero-sequence circuit has to be considered since the zero-sequence current can circulate in the windings. Therefore, conventional over-modulation strategies are not appropriate when the machine enters in the flux-weakening region. A few solutions dealing with the zero-sequence circuit have been proposed in literature. They use a modified space vector modulation or a conventional modulation with additional voltage limitations. The paper describes the aforementioned strategies and then a new strategy is proposed. This new strategy takes into account the magnitudes and phase angles of the voltage harmonic components. This yields better voltage utilization in the dq frame. Furthermore, inverter saturation is avoided in the zero-sequence frame and therefore zero-sequence current control is maintained. Three methods are implemented on a test bed composed of a three-phase permanent-magnet synchronous machine, a six-leg inverter and a hybrid DSP/FPGA controller. Experimental results are presented and compared for all strategies. A performance analysis is conducted as regards the region of operation and the machine parameters.
7CUELLAR Carlos, BENABOU Abdelkader, IDIR Nadir
"Characterization and modeling of hysteresis for magnetic materials used in EMI filters of power converters"
IEEE Transactions on Power Electronics, Vol. 29, N°. 9, p. 4911-4920, 9,
The magnetic material when designing EMI filter determines the inductance value and the parasitic elements that influence the insertion loss effectiveness of the filter. Moreover, the EMI filter characterization is usually realized at low power levels (low current and low voltage). When the EMI filter is subjected to higher currents through its coils, the principal characteristics of the filter (inductance variation with current and frequency) are modified. To account for these variations in the design step, it is useful to take into account the hysteresis model that represents the inductive and dissipative effects. Therefore, in this paper, an approach combining a magnetic hysteresis model together with a concept of material capacitance is proposed. The model is identified from a single turn of flat copper ribbon (STFC) experimental setup. Then, the experimental data are modeled with the proposed hysteretic and capacitive material behavior model (HCM) that is implemented in an equivalent circuit modeling approach, accounting for both the magnetic behavior law together with the "material capacitance". The robustness of the proposed approach is evaluated by comparison and validation with the experiment results, showing good representation of the inductive and partially the dissipative effects
8MESLEM Nacim, HIEU LE Vu Tuan, LABARRE Cécile, KOTNY Jean-Luc, IDIR Nadir
"Set-membership methods applied to identify high-frequency elements of EMI filters"
Control Engineering Practice Journal, Science Direct, ELSEVIER, Vol. 29, p. 13-22, 8, url,
In order to enhance the performance of electromagnetic interference (EMI) filters, it is necessary to identify high-frequency parasitic elements of their passive components, mainly those related to the coupled inductors. Motivated by this issue, in this work a realistic high-frequency model is proposed for the coupled inductors. Actually, using interval analysis in particular the forward–backward contractor, a set-membership algorithm has been developed to estimate systematically the parasitic elements linked with the magnetic components. The main advantages of this algorithm compared to the fitting methods are the values of the estimated parameters are always positive and the corrupted data are taken into account. The comparison of the simulation results and the experimental data allows us to validate the proposed method.
"Equivalent Matrix Structure Modeling and Control of a Three-Phase Flying Capacitor Multilevel Inverter"
IET Power Electronics, Vol. 7, p. 1755 - 1796, 7
10AMANCI Adrian, GIRAUD Frédéric, GIRAUD-AUDINE Christophe, AMBERG Michel, DAWSON Francis
"Analysis of the energy harvesting performance of a piezoelectric bender outside its resonance"
Sensors & Actuators , Vol. 217, p. 129-138, 7, url,
When the frequency of the source of vibration of a piezolectric generator is significantly different from its eigenfrequency, the dielectric power losses become prominent and decrease the amount of power which is practically harvested. For off-resonance vibrating frequencies, the optimal operating conditions can be obtained with a Maximum Power Point Tracking method. This paper introduces complex phasors in the study of power conversion for piezoelectric generators. These complex phasors are used to describe three strategies which help simplify the tracking of the optimal generator output power for vibration frequencies which are away from resonance. Experimental results obtained on a prototype illustrate and confirm the approach with the phasor approaches illustrate and confirm the success of the proposed optimal power tracking strategies. Finally, we show that the efficiency results of each strategy depend on whether they are used inside or outside a frequency bandwidth around the eigenfrequency, and that the length of this bandwidth depends on the excitation amplitude.
"Development of a novel plane piezoelectric actuator using Hamilton’s principle based model and Hertz contact theory"
Sensors and Actuators A: Physical, Vol. 217, p. 116-123, 7, url,
A simple device based on friction coefficient control was designed as a solution to the lack of compact-
ness and simplicity encountered in the number of force feedback interfaces. The structure comprises a
64 × 38 × 3 mm copper-beryllium plate on which well-adjusted polarized piezoceramics are glued. The
plate stands on four legs, each of which has a spherical end. By controlling the drive voltage, friction force
may be varied as required by a user who moves the device on a flat surface, as he or she would do with
a normal mouse. This adds the possibility of rendering simulated forces from objects manipulated on a
PC screen. Friction forces obtained using Hertz contact theory compare well with the ones measured on
an experimental setup, which demonstrate the validity of the approach with regard to force feedback
"Line-to-line Voltage Space Vector Modulation for NPC Multilevel Converter with DC-link capacitor voltage balancing using reduntant vectors"
Journal of Electric Power Components and Systems, Vol. 42, p. 1070 - 1086, 6
13MARTIN Floran, ZAÏM Mohamed El Hadi, TOUNZI Abdelmounaïm, BERNARD Nicolas
"Improved Analytical Determination of Eddy Current Losses in Surface Mounted Permanent Magnets of Synchronous Machine"
IEEE Trans Mag., Vol. 50, N°. 6, 6
"Modular Multilevel Converter Models for Electromagnetic Transients"
IEEE Transactions on Power Delivery, Vol. 29, N°. 3, p. 1481-1489, 6,
Modular multilevel Converters(MMCs) may contain
numerous insulated-gate bipolar transistors. The modeling of such converters for electromagnetic transient-type (EMT-type) simulations is complex. Detailed models used in MMC-HVDC simulations may require very large computing times. Simplified and averaged models have been proposed in the past to overcome this problem. In this paper, existing averaged and simplified models are improved in order to increase their range of applications. The models are compared and analyzed for different transient events on an MMC-HVDC system.
"A change-detection algorithm for short-circuit fault detection in closed-loop AC drives"
IET Electric Power Applications, Vol. 8, N°. 5, p. 12, 5, url,
This paper deals with an on-line method for turn-to-turn short-circuit fault detection in low-voltage permanent-magnet synchronous machine drives. Due to the closed-loop control, the fault effects are reflected in the voltage. Therefore, an appropriate diagnostic index is proposed, which is derived from the positive- and negative-sequences of the voltage references. These sequences are obtained in the time domain via adaptive filters, which require only a few calculations. To increase the sensitivity to the fault, the algorithm is only applied to a part of the voltage references, i.e. the output of the proportional-integral controllers. Further, the cumulative-sum algorithm is introduced to cope with changes of small magnitudes. This algorithm allows a change of a fault index to be detected and can be used as a decision system. The resulting fault detection scheme is computationally cheap and can be embedded in the control unit. Simulations and experimental results validate the proposed method in steady state and the performances under non-stationary operating conditions are also investigated.
16BEN AYED Ramzi, BRISSET Stéphane
"n-level output space mapping for electromagnetic design optimization"
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 33, N°. 3, p. 868 - 878, 5,
Optimal design with the finite element models is often expensive in terms of the computation time. The space-mapping technique allows benefiting both the fast calculation of the coarse model and the accuracy of the fine one. In this paper, an n-level output space-mapping algorithm is proposed. The results show that the proposed algorithm allows saving computation time compared to traditional 2-level output space mapping algorithm
17FRATILA Radu, BENABOU Abdelkader, TOUNZI Abdelmounaïm, MIPO Jean-Claude
"A Combined Experimental and Finite Element Analysis Method for the Estimation of Eddy-Current Loss in NdFeB Magnets"
Sensors, Vol. 14, N°. 5, p. 8505-8512, 5, url,
NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.
18CREUSE Emmanuel, NICAISE Serge, TITTARELLI Roberta
"Space-time residual-based a posteriori estimators for the A−φ magnetodynamic formulation of the Maxwell system."
Comput. Methods Appl. Math., Vol. 14, N°. 4, p. 429--460, 5, url,
In this paper, an a posteriori residual error estimator is proposed for the A−ϕ magnetodynamic Maxwell system given in its potential and space/time formulation and solved by a finite element method. The reliability as well as the efficiency of the estimator are established for several norms. Then, numerical tests are performed, allowing to illustrate the obtained theoretical results.
19ABULIZI Maimaitrireyimu, PENG Ling, LI Yongdong, FRANCOIS Bruno
"Performance analysis of a controller for doubly-fed induction generators based wind turbines against parameter variations"
International review of Electrical Engineering (IREEE), Vol. 9, N°. 2, p. 262 - 269, 4
20GONG Jinlin, ASLAN Bassel, SEMAIL Eric, GILLON Frédéric
"High Speed Functionality Optimization of Five-Phase Machine Using 3rd Harmonic Current"
COMPEL, Vol. 33, N°. 3, p. 14, 4, url,
Some surrogate-assisted optimization techniques are applied in order to improve the performances of a 5-phase Permanent Magnet (PM) machine in the context of a complex model requiring computation time. An optimal control of four independent currents is proposed in order to minimize the total losses with the respect of functioning constraints. Moreover, some geometrical parameters are added to the optimization process allowing a co-design between control and dimensioning. The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region. But these losses, which highly depend on magnetic state of the machine, must be calculated by Finite Element Method (FEM) to be accurate. The FEM has the drawback to be time consuming. It is why, a direct optimization using FEM is critical. The response surface method (RSM) and the Efficient Global Optimization (EGO) algorithm consist in approximating the FEM by a surrogate model used directly or indirectly in the optimization process. The optimal results proved the interest of the both methods in this context
"Vibration Control and Preliminary evaluation of a piezo-electric actuator for use as a force-feedback device"
European Journal on Electrical Engineering, Vol. 17, N°. 1/2, p. 9-26, 4
"Multiobjective approach developed for optimizing the dynamic behavior of incremental linear actuators"
COMPEL, Vol. 33, N°. 3, p. 953-964, 4, url,
– The purpose of this paper is to develop an optimal approach for optimizing the dynamic behavior of incremental linear actuators.

– First, a parameterized design model is built. Second, a dynamic model is implemented. This model takes into account the thrust force computed from a finite element model. Finally, the multiobjective optimization approach is applied to the dynamic model to optimize control as well as design parameters.

– The Pareto front resulting from the optimization approach (or the parallel optimization approach,) is better than the Pareto, which is obtained from the only application of MultiObjective Genetic Algorithm (MOGA) method (or parallel MOGA with the same number of optimization approach objective function evaluations). The only use of MOGA can reach the region near an optimal Pareto front, but it consumes more computing time than the multiobjective optimization approach. At each flowchart stage, parallelization leads to a significant reduction of computing time which is halved when using two-core machine.

– In order to solve the multiobjective problem, a hybrid algorithm based on MOGA is developed
23BERBECEA Alexandru Claudiu, GILLON Frédéric, BROCHET Pascal
"Multi-level design of an isolation transformer using collaborative optimization"
COMPEL, Vol. 33, N°. 3, p. 1038-1050, 4, url,
– The purpose of this paper is to present an application of a multidisciplinary multi-level design optimization methodology for the optimal design of a complex device from the field of electrical engineering throughout discipline-based decomposition. The considered benchmark is a single-phase low voltage safety isolation transformer.

– The multidisciplinary optimization of a safety isolation transformer is addressed within this paper. The bi-level collaborative optimization (CO) strategy is employed to coordinate the optimization of the different disciplinary analytical models of the transformer (no-load and full-load electromagnetic models and thermal model). The results represent the joint decision of the three distinct disciplinary optimizers involved in the design process, under the coordination of the CO’s master optimizer. In order to validate the proposed approach, the results are compared to those obtained using a classical single-level optimization method – sequential quadratic programming – carried out using a multidisciplinary feasible formulation for handling the evaluation of the coupling model of the transformer.

– Results show a good convergence of the CO process with the analytical modeling of the transformer, with a reduced number of coordination iterations. However, a relatively important number of disciplinary models evaluations were required by the local optimizers.

– The CO multi-level methodology represents a new approach in the field of electrical engineering. The advantage of this approach consists in that it integrates decisions from different teams of specialists within the optimal design process of complex systems and all exchanges are managed within a unique coordination process.
24MAYET Clément, POUGET Julien, BOUSCAYROL Alain, LHOMME Walter
"Influence of an energy storage system on the energy consumption of a diesel-electric locomotive"
IEEE Transactions on vehicular technology, Vol. 63, N°. 3, p. 1032-1040, 3,
This paper studies the influence of an Energy Storage System (ESS) on the fuel consumption of a diesel-electric locomotive. First, an energetic model of a diesel-electric locomotive is established using Energetic Macroscopic Representation. An inversion-based control is deduced, and the model is validated by experimental results on a real locomotive. Secondly, from this validated model, a battery/supercapacitor ESS is added in simulation in order to study the benefit of the hybridization before integration on the real vehicle. The simulations show that a simple energy management based on a frequency approach allows the reduction of 25% the fuel consumption on a real drive cycle.
"General Analytical Model of Magnet Average Eddy-Current Volume Losses for Comparison of Multi-phase PM Machines with Concentrated Winding"
IEEE Transactions on Energy Conversion, Vol. 29, N°. 1, p. 11, 3, url,
this paper studies magnet eddy-current losses in permanent magnet (PM) machines with concentrated winding. First of all, space harmonics of magnetomotive force (MMF) and their influence on magnet losses in electrical machines are investigated. Secondly, analytical model of magnet volume losses is developed by studying the interaction between MMF harmonics wavelengths and magnet pole dimensions. Different cases of this interaction are exhibited according to the ratio between each harmonic wavelength and magnet pole width. Then various losses sub-models are deduced. Using this analytical model, magnet volume losses for many Slots/Poles combinations of 3, 5, and 7 phase machines with concentrated winding are compared. This comparison leads to classify combinations into different families depending on their magnet losses level. Finally, in order to verify the theoretical study, Finite Element models are built and simulation results are compared with analytical calculations.
"Real time supervision for a hybrid renewable power system emulator"
Simulation Modelling Practice and Theory, Elsevier, Vol. 42, p. 53-72, 3,
This paper is focused on the design and the implementation of a hybrid PV-wind power
system with batteries. It aims to emulate the behavior of a hybrid power system in order
to face load consumption variations. Final system includes relevant contributions such as
quality of emulator (a large number of parameters are considered); capacity to study various
impacts simultaneously, a fast dynamic and a set of experimental tests that have been
achieved and validated with a test bench. Moreover, a relevant supervision strategy based
on currents control and batteries State Of Charge (SOC) estimation has been successfully
performed despite simplicity of converter controls.
27HENNERON Thomas, CLENET Stéphane
"Model Order Reduction of Non-Linear Magnetostatic Problems Based on POD and DEI Methods"
IEEE Transactions on Magnetics, 2
"Comparison of different models and simulation approaches for the energetic study of a subway"
IEEE Transactions on vehicular technology, Vol. 63, N°. 2, p. 556-565, 2,
This paper aims to compare different models and simulation approaches for an energetic simulation of an automatic subway. For this purpose, several models are carried out from a dynamic model which is validated by comparison with experimental measurements. Furthermore, two different simulation approaches are compared: backward and forward approaches. A simplified model is obtained and allows the reduction of the simulation time by 96 compared to the dynamic model by keeping an accuracy of more than 99 %.
29DULAR Patrick, TANG Zuqi, LE MENACH Yvonnick, CREUSE Emmanuel, PIRIOU Francis
"Comparison of Residual and Hierarchical Finite Element Error Estimators in Eddy Current Problems"
IEEE Transactions on Magnetics, Vol. 50, N°. 2, p. 501-504, 2, url,
The finite element computation of eddy current problems introduces numerical error. This error can only be estimated. Among all error estimators (EEs) already developed, two estimators, called residual and hierarchical EEs, proven to be reliable and efficient, are theoretically and numerically compared. Both estimators show similar behaviors and locations of the error.
30HENNERON Thomas, CLENET Stéphane
"Model order reduction applied to the numerical study of electrical motor based on POD method taking into account rotation movement "
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2
31MAC Duy Hung, CLENET Stéphane
"A Posteriori Error Estimation for Stochastic Static Problems"
IEEE Transactions on Magnetics, Vol. 50, N°. 2, 2
32BUENO Marie-Ange, LEMAIRE-SEMAIL Betty, AMBERG Michel, GIRAUD Frédéric
"A simulation from a tactile device to render the touch of textile fabrics: a preliminary study on velvet"
Textile Research Journal, Vol. 84, N°. 13, p. 1428-1440, 2, url,
In the field of e-commerce or virtual prototyping of textile fabrics and garments, tactile stimulators could be very
pertinent and useful tools for the industry. The challenge is to stimulate the human hand using a tactile device in order to
simulate the textile fabric touch. The principle of the tactile device is described. The kinds of fabrics investigated are pile
fabrics, such as velvet. In this study, the illusion of pile is given when touching the smooth plate of the tactile device by
modulating the coefficient of friction between the plate and the finger during an active movement. The control signal is
qualitatively designed from some tribological features identified in this study as velvet fabric characteristics. The influence
of each tribological feature on the tactile rendering is studied via psychophysical studies comparing real and simulated
fabrics. The best rendering needs a simulation with three specific features: a coefficient of friction, which depends on the
finger movement direction; a transition phase for the change of movement direction; and small amplitude variations of
the coefficient of friction with about one millimeter wavelength.
33PIERQUIN Antoine, BRISSET Stéphane, HENNERON Thomas, CLENET Stéphane
"Benefits of Waveform Relaxation Method and Output Space Mapping for the Optimization of Multirate Systems"
IEEE Transactions on Magnetics, Vol. 50, N°. 2, p. 653-656, 2,
We present an optimization problem that requires the modeling of a multirate system composed of subsystems with different time constants. We use waveform relaxation method (WRM) in order to simulate such a system, but computation time can be penalizing in an optimization context. Thus, we apply output space mapping (OSM) that uses several models of the system to accelerate optimization. WRM is one of the models used in OSM.
34KAMAL Elkhatib, AITOUCHE Abdel, ABBES Dhaker
"Robust Fuzzy Scheduler Fault Tolerant Control of Wind Energy Systems Subject to Sensor and Actuator Faults"
International Journal of Electrical Power & Energy Systems, Vol. 55, p. 402-419, 2, url,
In this paper, new robust fuzzy scheduler fault tolerant control is proposed to tackle multivariable nonlinear systems subject to sensor faults, actuator faults and parameter uncertainties. Takagi–Sugeno fuzzy model is employed to represent the nonlinear wind energy systems, and then a model-based fuzzy scheduler controller design use the concept of general-distributed compensation. Takagi–Sugeno fuzzy systems are classified into three families based on the input matrices and a fault tolerant control synthesis procedure is given for each family. In each family, sufficient conditions are derived for robust stabilization, in the sense of Lyapunov method and Taylor series stability, for the Takagi–Sugeno fuzzy system with parametric uncertainties, sensor faults, and actuator faults. The sufficient conditions are formulated in the format of linear matrix inequalities. The effectiveness of the proposed controller design methodology is finally demonstrated through a wind energy system with doubly fed induction generators to illustrate the effectiveness of the proposed method.
35FRATILA Mircea, BENABOU Abdelkader, TOUNZI Abdelmounaïm, DESSOUDE Maxime
"Calculation of iron loss in Solid Rotor Induction Machine using FEM"
IEEE Transactions on Magnetics, Vol. 50, N°. 2, 2
36CREUSE Emmanuel, NICAISE Serge, TANG Zuqi
"Helmholtz decomposition of vector fields with mixed boundary conditions and an application to a posteriori finite element error analysis of the Maxwell system"
Mathematical Methods in the Applied Sciences, Vol. 38, N°. 4, p. 738--750, 2, url,
This paper is devoted to the derivation of a Helmholtz decomposition of vector fields in the case ofmixed boundary conditions imposed on the boundary of the domain. This particular decomposition allows to obtain a residual a posteriori error estimator for the approximation ofmagnetostatic problems given in the so-called A-formulation, for which the reliability can be established. Numerical tests confirm the obtained theoretical predictions.
37WANG Zifu, TANG Zuqi, HENNERON Thomas, PIRIOU Francis, MIPO Jean-Claude
"Energetic Galerkin Projection of Electromagnetic Fields Between Different Meshes"
IEEE Transactions on Magnetics, Vol. 50, N°. 2, p. 613-616, 2, url,
Mesh-to-mesh field transfer arises frequently in finite element computations. Typical applications may concern remeshing, multigrid methods, domain decomposition and multi-physics problems. For electromagnetic fields, one of the essential constraints in such transfers is to conserve energetic quantities such as the magnetic energy and the joule heating. Within the framework of Galerkin projection on overlapping domains, we introduce the definition of energetic norms for electromagnetic fields. The corresponding formulations we propose, provide energy-conserving projection of electromagnetic fields between different meshes.
38NGUYEN Thanh Hung, GIRAUD-AUDINE Christophe, LEMAIRE-SEMAIL Betty, ABBA Gabriel, BIGOT Régis
"Modeling of Forging Processes Assisted by Piezoelectric Actuators: Principles and Experimental Validation"
IEEE Transactions on Industry Applications, Vol. 50, N°. 1, p. 244-252, 1,
This paper presents the modeling of forging processes assisted by vibrations. A piezoelectric actuator is used to generate specific low-frequency vibration waveforms superimposed to the forging motion. Experimental results show a reduction of the forging load during upsetting tests. However, the appropriate waveforms and their influence on the forging load are still poorly understood. Moreover, the requirements of actuators and the design of the control should be known in advance. Therefore, there is a need for simulation to predict those issues. Due to the complexity of the interactions between the different components of the system, a complete model of the process is proposed. It is developed using an energetic macroscopic representation to
preserve causality throughout themodeling. Simulation results are then compared with representative experimental results.
" Vector control method applied to a traveling wave in a finite beam"
IEEE Transactions on Ultrasonics, ferroelectricity and Frequency Control (TUFFC), Vol. 61, N°. 1, p. 147-158, 1, url,
This paper presents the closed-loop control of exciters to produce a traveling wave in a finite beam. This control is based on a dynamical modeling of the system established in a rotating reference frame. This method allows dynamic and independent control of the phase and amplitude of two vibration modes. The condition to obtain the traveling wave is written in this rotating frame, and requires having two vibration modes with the same amplitude, and imposing a phase shift of 90?? between them. The advantage of the method is that it allows easy implementation of a closed loop control that can handle parameter drift of the system, after a temperature rise, for example. The modeling is compared with measurement on an experimental test bench which also implements real-time control. We managed to experimentally obtain a settling time of 250 ms for the traveling wave, and a standing wave ratio (SWR) of 1.3.
40VINOT Emmanuel, TRIGUI Rochdi, CHENG Yuan, ESPANET Christophe, BOUSCAYROL Alain
"Improvement of an EVT-based HEV using dynamic programming"
IEEE transactions on Vehicular Technology , Vol. 63, N°. 1, p. 40-49, 1
41MAC Duy Hung, CLENET Stéphane, BEDDEK Karim, CHEVALLIER Loïc, KORECKI Julien
"Influence of uncertainties on the B(H) curves on the flux linkage of a turboalternator"
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 27, N°. 3, p. 385-399, 1, url,
In this paper, we analyze the influence of the uncertainties on the behavior constitutive laws of ferromagnetic materials on the behavior of a turboalternator. A simple stochastic model of anhysteretic nonlinear B(H) curve is proposed for the ferromagnetic yokes of the stator and the rotor. The B(H) curve is defined by five random parameters. We quantify the influence of the variability of these five parameters on the flux linkage of one phase of the stator winding depending on the excitation current I. The influence of each parameter is analyzed via the Sobol indices. With this analysis, we can determine the most influential parameters for each state of magnetization (according to the level of I) and investigate where the characterization process of the B(H) curve should focus to
improve the accuracy of the computed flux linkage.
"MMC Capacitor Voltage Decoupling and Balancing Controls "
IEEE Transactions on Power Delivery, Vol. 30, N°. 2, p. 704 - 712, 1,
A modular multilevel converter control system, based on converter energy storage, is proposed in this paper for two different control modes: active power and dc voltage. The proposed control system decouples the submodule (SM) capacitor voltages from the dc bus voltage. One of the practical applications is the management of active redundant SMs. A practical HVDC system with 401-level MMCs, including 10% redundancy in MMC SMs, is used for validating and demonstrating the advantages of the proposed control system. This paper also presents a novel capacitor voltage balancing control based on max – min functions. It is used to drastically reduce the number of switchings for each SM and enhances computational efficiency.